MagickCore  7.0.8
Convert, Edit, Or Compose Bitmap Images
resize.c
Go to the documentation of this file.
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % %
4 % %
5 % %
6 % RRRR EEEEE SSSSS IIIII ZZZZZ EEEEE %
7 % R R E SS I ZZ E %
8 % RRRR EEE SSS I ZZZ EEE %
9 % R R E SS I ZZ E %
10 % R R EEEEE SSSSS IIIII ZZZZZ EEEEE %
11 % %
12 % %
13 % MagickCore Image Resize Methods %
14 % %
15 % Software Design %
16 % Cristy %
17 % July 1992 %
18 % %
19 % %
20 % Copyright 1999-2018 ImageMagick Studio LLC, a non-profit organization %
21 % dedicated to making software imaging solutions freely available. %
22 % %
23 % You may not use this file except in compliance with the License. You may %
24 % obtain a copy of the License at %
25 % %
26 % https://imagemagick.org/script/license.php %
27 % %
28 % Unless required by applicable law or agreed to in writing, software %
29 % distributed under the License is distributed on an "AS IS" BASIS, %
30 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31 % See the License for the specific language governing permissions and %
32 % limitations under the License. %
33 % %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 */
38 
39 /*
40  Include declarations.
41 */
42 #include "MagickCore/studio.h"
44 #include "MagickCore/artifact.h"
45 #include "MagickCore/blob.h"
46 #include "MagickCore/cache.h"
47 #include "MagickCore/cache-view.h"
48 #include "MagickCore/channel.h"
49 #include "MagickCore/color.h"
51 #include "MagickCore/draw.h"
52 #include "MagickCore/exception.h"
54 #include "MagickCore/gem.h"
55 #include "MagickCore/image.h"
57 #include "MagickCore/list.h"
58 #include "MagickCore/memory_.h"
60 #include "MagickCore/magick.h"
62 #include "MagickCore/property.h"
63 #include "MagickCore/monitor.h"
66 #include "MagickCore/option.h"
67 #include "MagickCore/pixel.h"
70 #include "MagickCore/resample.h"
72 #include "MagickCore/resize.h"
74 #include "MagickCore/resource_.h"
75 #include "MagickCore/string_.h"
78 #include "MagickCore/token.h"
79 #include "MagickCore/utility.h"
81 #include "MagickCore/version.h"
82 #if defined(MAGICKCORE_LQR_DELEGATE)
83 #include <lqr.h>
84 #endif
85 
86 /*
87  Typedef declarations.
88 */
90 {
91  double
92  (*filter)(const double,const ResizeFilter *),
93  (*window)(const double,const ResizeFilter *),
94  support, /* filter region of support - the filter support limit */
95  window_support, /* window support, usally equal to support (expert only) */
96  scale, /* dimension scaling to fit window support (usally 1.0) */
97  blur, /* x-scale (blur-sharpen) */
98  coefficient[7]; /* cubic coefficents for BC-cubic filters */
99 
103 
104  size_t
106 };
107 
108 /*
109  Forward declaractions.
110 */
111 static double
112  I0(double x),
113  BesselOrderOne(double),
114  Sinc(const double, const ResizeFilter *),
115  SincFast(const double, const ResizeFilter *);
116 
117 /*
118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
119 % %
120 % %
121 % %
122 + F i l t e r F u n c t i o n s %
123 % %
124 % %
125 % %
126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
127 %
128 % These are the various filter and windowing functions that are provided.
129 %
130 % They are internal to this module only. See AcquireResizeFilterInfo() for
131 % details of the access to these functions, via the GetResizeFilterSupport()
132 % and GetResizeFilterWeight() API interface.
133 %
134 % The individual filter functions have this format...
135 %
136 % static MagickRealtype *FilterName(const double x,const double support)
137 %
138 % A description of each parameter follows:
139 %
140 % o x: the distance from the sampling point generally in the range of 0 to
141 % support. The GetResizeFilterWeight() ensures this a positive value.
142 %
143 % o resize_filter: current filter information. This allows function to
144 % access support, and possibly other pre-calculated information defining
145 % the functions.
146 %
147 */
148 
149 static double Blackman(const double x,
150  const ResizeFilter *magick_unused(resize_filter))
151 {
152  /*
153  Blackman: 2nd order cosine windowing function:
154  0.42 + 0.5 cos(pi x) + 0.08 cos(2pi x)
155 
156  Refactored by Chantal Racette and Nicolas Robidoux to one trig call and
157  five flops.
158  */
159  const double cosine=cos((double) (MagickPI*x));
160  magick_unreferenced(resize_filter);
161  return(0.34+cosine*(0.5+cosine*0.16));
162 }
163 
164 static double Bohman(const double x,
165  const ResizeFilter *magick_unused(resize_filter))
166 {
167  /*
168  Bohman: 2rd Order cosine windowing function:
169  (1-x) cos(pi x) + sin(pi x) / pi.
170 
171  Refactored by Nicolas Robidoux to one trig call, one sqrt call, and 7 flops,
172  taking advantage of the fact that the support of Bohman is 1.0 (so that we
173  know that sin(pi x) >= 0).
174  */
175  const double cosine=cos((double) (MagickPI*x));
176  const double sine=sqrt(1.0-cosine*cosine);
177  magick_unreferenced(resize_filter);
178  return((1.0-x)*cosine+(1.0/MagickPI)*sine);
179 }
180 
181 static double Box(const double magick_unused(x),
182  const ResizeFilter *magick_unused(resize_filter))
183 {
185  magick_unreferenced(resize_filter);
186 
187  /*
188  A Box filter is a equal weighting function (all weights equal).
189  DO NOT LIMIT results by support or resize point sampling will work
190  as it requests points beyond its normal 0.0 support size.
191  */
192  return(1.0);
193 }
194 
195 static double Cosine(const double x,
196  const ResizeFilter *magick_unused(resize_filter))
197 {
198  magick_unreferenced(resize_filter);
199 
200  /*
201  Cosine window function:
202  cos((pi/2)*x).
203  */
204  return((double)cos((double) (MagickPI2*x)));
205 }
206 
207 static double CubicBC(const double x,const ResizeFilter *resize_filter)
208 {
209  /*
210  Cubic Filters using B,C determined values:
211  Mitchell-Netravali B = 1/3 C = 1/3 "Balanced" cubic spline filter
212  Catmull-Rom B = 0 C = 1/2 Interpolatory and exact on linears
213  Spline B = 1 C = 0 B-Spline Gaussian approximation
214  Hermite B = 0 C = 0 B-Spline interpolator
215 
216  See paper by Mitchell and Netravali, Reconstruction Filters in Computer
217  Graphics Computer Graphics, Volume 22, Number 4, August 1988
218  http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/
219  Mitchell.pdf.
220 
221  Coefficents are determined from B,C values:
222  P0 = ( 6 - 2*B )/6 = coeff[0]
223  P1 = 0
224  P2 = (-18 +12*B + 6*C )/6 = coeff[1]
225  P3 = ( 12 - 9*B - 6*C )/6 = coeff[2]
226  Q0 = ( 8*B +24*C )/6 = coeff[3]
227  Q1 = ( -12*B -48*C )/6 = coeff[4]
228  Q2 = ( 6*B +30*C )/6 = coeff[5]
229  Q3 = ( - 1*B - 6*C )/6 = coeff[6]
230 
231  which are used to define the filter:
232 
233  P0 + P1*x + P2*x^2 + P3*x^3 0 <= x < 1
234  Q0 + Q1*x + Q2*x^2 + Q3*x^3 1 <= x < 2
235 
236  which ensures function is continuous in value and derivative (slope).
237  */
238  if (x < 1.0)
239  return(resize_filter->coefficient[0]+x*(x*
240  (resize_filter->coefficient[1]+x*resize_filter->coefficient[2])));
241  if (x < 2.0)
242  return(resize_filter->coefficient[3]+x*(resize_filter->coefficient[4]+x*
243  (resize_filter->coefficient[5]+x*resize_filter->coefficient[6])));
244  return(0.0);
245 }
246 
247 static double CubicSpline(const double x,const ResizeFilter *resize_filter)
248 {
249  if (resize_filter->support <= 2.0)
250  {
251  /*
252  2-lobe Spline filter.
253  */
254  if (x < 1.0)
255  return(((x-9.0/5.0)*x-1.0/5.0)*x+1.0);
256  if (x < 2.0)
257  return(((-1.0/3.0*(x-1.0)+4.0/5.0)*(x-1.0)-7.0/15.0)*(x-1.0));
258  return(0.0);
259  }
260  if (resize_filter->support <= 3.0)
261  {
262  /*
263  3-lobe Spline filter.
264  */
265  if (x < 1.0)
266  return(((13.0/11.0*x-453.0/209.0)*x-3.0/209.0)*x+1.0);
267  if (x < 2.0)
268  return(((-6.0/11.0*(x-1.0)+270.0/209.0)*(x-1.0)-156.0/209.0)*(x-1.0));
269  if (x < 3.0)
270  return(((1.0/11.0*(x-2.0)-45.0/209.0)*(x-2.0)+26.0/209.0)*(x-2.0));
271  return(0.0);
272  }
273  /*
274  4-lobe Spline filter.
275  */
276  if (x < 1.0)
277  return(((49.0/41.0*x-6387.0/2911.0)*x-3.0/2911.0)*x+1.0);
278  if (x < 2.0)
279  return(((-24.0/41.0*(x-1.0)+4032.0/2911.0)*(x-1.0)-2328.0/2911.0)*(x-1.0));
280  if (x < 3.0)
281  return(((6.0/41.0*(x-2.0)-1008.0/2911.0)*(x-2.0)+582.0/2911.0)*(x-2.0));
282  if (x < 4.0)
283  return(((-1.0/41.0*(x-3.0)+168.0/2911.0)*(x-3.0)-97.0/2911.0)*(x-3.0));
284  return(0.0);
285 }
286 
287 static double Gaussian(const double x,const ResizeFilter *resize_filter)
288 {
289  /*
290  Gaussian with a sigma = 1/2 (or as user specified)
291 
292  Gaussian Formula (1D) ...
293  exp( -(x^2)/((2.0*sigma^2) ) / (sqrt(2*PI)*sigma^2))
294 
295  Gaussian Formula (2D) ...
296  exp( -(x^2+y^2)/(2.0*sigma^2) ) / (PI*sigma^2) )
297  or for radius
298  exp( -(r^2)/(2.0*sigma^2) ) / (PI*sigma^2) )
299 
300  Note that it is only a change from 1-d to radial form is in the
301  normalization multiplier which is not needed or used when Gaussian is used
302  as a filter.
303 
304  The constants are pre-calculated...
305 
306  coeff[0]=sigma;
307  coeff[1]=1.0/(2.0*sigma^2);
308  coeff[2]=1.0/(sqrt(2*PI)*sigma^2);
309 
310  exp( -coeff[1]*(x^2)) ) * coeff[2];
311 
312  However the multiplier coeff[1] is need, the others are informative only.
313 
314  This separates the gaussian 'sigma' value from the 'blur/support'
315  settings allowing for its use in special 'small sigma' gaussians,
316  without the filter 'missing' pixels because the support becomes too
317  small.
318  */
319  return(exp((double)(-resize_filter->coefficient[1]*x*x)));
320 }
321 
322 static double Hann(const double x,
323  const ResizeFilter *magick_unused(resize_filter))
324 {
325  /*
326  Cosine window function:
327  0.5+0.5*cos(pi*x).
328  */
329  const double cosine=cos((double) (MagickPI*x));
330  magick_unreferenced(resize_filter);
331  return(0.5+0.5*cosine);
332 }
333 
334 static double Hamming(const double x,
335  const ResizeFilter *magick_unused(resize_filter))
336 {
337  /*
338  Offset cosine window function:
339  .54 + .46 cos(pi x).
340  */
341  const double cosine=cos((double) (MagickPI*x));
342  magick_unreferenced(resize_filter);
343  return(0.54+0.46*cosine);
344 }
345 
346 static double Jinc(const double x,
347  const ResizeFilter *magick_unused(resize_filter))
348 {
349  magick_unreferenced(resize_filter);
350 
351  /*
352  See Pratt "Digital Image Processing" p.97 for Jinc/Bessel functions.
353  http://mathworld.wolfram.com/JincFunction.html and page 11 of
354  http://www.ph.ed.ac.uk/%7ewjh/teaching/mo/slides/lens/lens.pdf
355 
356  The original "zoom" program by Paul Heckbert called this "Bessel". But
357  really it is more accurately named "Jinc".
358  */
359  if (x == 0.0)
360  return(0.5*MagickPI);
361  return(BesselOrderOne(MagickPI*x)/x);
362 }
363 
364 static double Kaiser(const double x,const ResizeFilter *resize_filter)
365 {
366  /*
367  Kaiser Windowing Function (bessel windowing)
368 
369  I0( beta * sqrt( 1-x^2) ) / IO(0)
370 
371  Beta (coeff[0]) is a free value from 5 to 8 (defaults to 6.5).
372  However it is typically defined in terms of Alpha*PI
373 
374  The normalization factor (coeff[1]) is not actually needed,
375  but without it the filters has a large value at x=0 making it
376  difficult to compare the function with other windowing functions.
377  */
378  return(resize_filter->coefficient[1]*I0(resize_filter->coefficient[0]*
379  sqrt((double) (1.0-x*x))));
380 }
381 
382 static double Lagrange(const double x,const ResizeFilter *resize_filter)
383 {
384  double
385  value;
386 
387  register ssize_t
388  i;
389 
390  ssize_t
391  n,
392  order;
393 
394  /*
395  Lagrange piecewise polynomial fit of sinc: N is the 'order' of the lagrange
396  function and depends on the overall support window size of the filter. That
397  is: for a support of 2, it gives a lagrange-4 (piecewise cubic function).
398 
399  "n" identifies the piece of the piecewise polynomial.
400 
401  See Survey: Interpolation Methods, IEEE Transactions on Medical Imaging,
402  Vol 18, No 11, November 1999, p1049-1075, -- Equation 27 on p1064.
403  */
404  if (x > resize_filter->support)
405  return(0.0);
406  order=(ssize_t) (2.0*resize_filter->window_support); /* number of pieces */
407  n=(ssize_t) (resize_filter->window_support+x);
408  value=1.0f;
409  for (i=0; i < order; i++)
410  if (i != n)
411  value*=(n-i-x)/(n-i);
412  return(value);
413 }
414 
415 static double Quadratic(const double x,
416  const ResizeFilter *magick_unused(resize_filter))
417 {
418  magick_unreferenced(resize_filter);
419 
420  /*
421  2rd order (quadratic) B-Spline approximation of Gaussian.
422  */
423  if (x < 0.5)
424  return(0.75-x*x);
425  if (x < 1.5)
426  return(0.5*(x-1.5)*(x-1.5));
427  return(0.0);
428 }
429 
430 static double Sinc(const double x,
431  const ResizeFilter *magick_unused(resize_filter))
432 {
433  magick_unreferenced(resize_filter);
434 
435  /*
436  Scaled sinc(x) function using a trig call:
437  sinc(x) == sin(pi x)/(pi x).
438  */
439  if (x != 0.0)
440  {
441  const double alpha=(double) (MagickPI*x);
442  return(sin((double) alpha)/alpha);
443  }
444  return((double) 1.0);
445 }
446 
447 static double SincFast(const double x,
448  const ResizeFilter *magick_unused(resize_filter))
449 {
450  magick_unreferenced(resize_filter);
451 
452  /*
453  Approximations of the sinc function sin(pi x)/(pi x) over the interval
454  [-4,4] constructed by Nicolas Robidoux and Chantal Racette with funding
455  from the Natural Sciences and Engineering Research Council of Canada.
456 
457  Although the approximations are polynomials (for low order of
458  approximation) and quotients of polynomials (for higher order of
459  approximation) and consequently are similar in form to Taylor polynomials /
460  Pade approximants, the approximations are computed with a completely
461  different technique.
462 
463  Summary: These approximations are "the best" in terms of bang (accuracy)
464  for the buck (flops). More specifically: Among the polynomial quotients
465  that can be computed using a fixed number of flops (with a given "+ - * /
466  budget"), the chosen polynomial quotient is the one closest to the
467  approximated function with respect to maximum absolute relative error over
468  the given interval.
469 
470  The Remez algorithm, as implemented in the boost library's minimax package,
471  is the key to the construction: http://www.boost.org/doc/libs/1_36_0/libs/
472  math/doc/sf_and_dist/html/math_toolkit/backgrounders/remez.html
473 
474  If outside of the interval of approximation, use the standard trig formula.
475  */
476  if (x > 4.0)
477  {
478  const double alpha=(double) (MagickPI*x);
479  return(sin((double) alpha)/alpha);
480  }
481  {
482  /*
483  The approximations only depend on x^2 (sinc is an even function).
484  */
485  const double xx = x*x;
486 #if MAGICKCORE_QUANTUM_DEPTH <= 8
487  /*
488  Maximum absolute relative error 6.3e-6 < 1/2^17.
489  */
490  const double c0 = 0.173610016489197553621906385078711564924e-2L;
491  const double c1 = -0.384186115075660162081071290162149315834e-3L;
492  const double c2 = 0.393684603287860108352720146121813443561e-4L;
493  const double c3 = -0.248947210682259168029030370205389323899e-5L;
494  const double c4 = 0.107791837839662283066379987646635416692e-6L;
495  const double c5 = -0.324874073895735800961260474028013982211e-8L;
496  const double c6 = 0.628155216606695311524920882748052490116e-10L;
497  const double c7 = -0.586110644039348333520104379959307242711e-12L;
498  const double p =
499  c0+xx*(c1+xx*(c2+xx*(c3+xx*(c4+xx*(c5+xx*(c6+xx*c7))))));
500  return((xx-1.0)*(xx-4.0)*(xx-9.0)*(xx-16.0)*p);
501 #elif MAGICKCORE_QUANTUM_DEPTH <= 16
502  /*
503  Max. abs. rel. error 2.2e-8 < 1/2^25.
504  */
505  const double c0 = 0.173611107357320220183368594093166520811e-2L;
506  const double c1 = -0.384240921114946632192116762889211361285e-3L;
507  const double c2 = 0.394201182359318128221229891724947048771e-4L;
508  const double c3 = -0.250963301609117217660068889165550534856e-5L;
509  const double c4 = 0.111902032818095784414237782071368805120e-6L;
510  const double c5 = -0.372895101408779549368465614321137048875e-8L;
511  const double c6 = 0.957694196677572570319816780188718518330e-10L;
512  const double c7 = -0.187208577776590710853865174371617338991e-11L;
513  const double c8 = 0.253524321426864752676094495396308636823e-13L;
514  const double c9 = -0.177084805010701112639035485248501049364e-15L;
515  const double p =
516  c0+xx*(c1+xx*(c2+xx*(c3+xx*(c4+xx*(c5+xx*(c6+xx*(c7+xx*(c8+xx*c9))))))));
517  return((xx-1.0)*(xx-4.0)*(xx-9.0)*(xx-16.0)*p);
518 #else
519  /*
520  Max. abs. rel. error 1.2e-12 < 1/2^39.
521  */
522  const double c0 = 0.173611111110910715186413700076827593074e-2L;
523  const double c1 = -0.289105544717893415815859968653611245425e-3L;
524  const double c2 = 0.206952161241815727624413291940849294025e-4L;
525  const double c3 = -0.834446180169727178193268528095341741698e-6L;
526  const double c4 = 0.207010104171026718629622453275917944941e-7L;
527  const double c5 = -0.319724784938507108101517564300855542655e-9L;
528  const double c6 = 0.288101675249103266147006509214934493930e-11L;
529  const double c7 = -0.118218971804934245819960233886876537953e-13L;
530  const double p =
531  c0+xx*(c1+xx*(c2+xx*(c3+xx*(c4+xx*(c5+xx*(c6+xx*c7))))));
532  const double d0 = 1.0L;
533  const double d1 = 0.547981619622284827495856984100563583948e-1L;
534  const double d2 = 0.134226268835357312626304688047086921806e-2L;
535  const double d3 = 0.178994697503371051002463656833597608689e-4L;
536  const double d4 = 0.114633394140438168641246022557689759090e-6L;
537  const double q = d0+xx*(d1+xx*(d2+xx*(d3+xx*d4)));
538  return((xx-1.0)*(xx-4.0)*(xx-9.0)*(xx-16.0)/q*p);
539 #endif
540  }
541 }
542 
543 static double Triangle(const double x,
544  const ResizeFilter *magick_unused(resize_filter))
545 {
546  magick_unreferenced(resize_filter);
547 
548  /*
549  1st order (linear) B-Spline, bilinear interpolation, Tent 1D filter, or
550  a Bartlett 2D Cone filter. Also used as a Bartlett Windowing function
551  for Sinc().
552  */
553  if (x < 1.0)
554  return(1.0-x);
555  return(0.0);
556 }
557 
558 static double Welch(const double x,
559  const ResizeFilter *magick_unused(resize_filter))
560 {
561  magick_unreferenced(resize_filter);
562 
563  /*
564  Welch parabolic windowing filter.
565  */
566  if (x < 1.0)
567  return(1.0-x*x);
568  return(0.0);
569 }
570 
571 /*
572 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
573 % %
574 % %
575 % %
576 + A c q u i r e R e s i z e F i l t e r %
577 % %
578 % %
579 % %
580 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
581 %
582 % AcquireResizeFilter() allocates the ResizeFilter structure. Choose from
583 % these filters:
584 %
585 % FIR (Finite impulse Response) Filters
586 % Box Triangle Quadratic
587 % Spline Hermite Catrom
588 % Mitchell
589 %
590 % IIR (Infinite impulse Response) Filters
591 % Gaussian Sinc Jinc (Bessel)
592 %
593 % Windowed Sinc/Jinc Filters
594 % Blackman Bohman Lanczos
595 % Hann Hamming Cosine
596 % Kaiser Welch Parzen
597 % Bartlett
598 %
599 % Special Purpose Filters
600 % Cubic SincFast LanczosSharp Lanczos2 Lanczos2Sharp
601 % Robidoux RobidouxSharp
602 %
603 % The users "-filter" selection is used to lookup the default 'expert'
604 % settings for that filter from a internal table. However any provided
605 % 'expert' settings (see below) may override this selection.
606 %
607 % FIR filters are used as is, and are limited to that filters support window
608 % (unless over-ridden). 'Gaussian' while classed as an IIR filter, is also
609 % simply clipped by its support size (currently 1.5 or approximately 3*sigma
610 % as recommended by many references)
611 %
612 % The special a 'cylindrical' filter flag will promote the default 4-lobed
613 % Windowed Sinc filter to a 3-lobed Windowed Jinc equivalent, which is better
614 % suited to this style of image resampling. This typically happens when using
615 % such a filter for images distortions.
616 %
617 % SPECIFIC FILTERS:
618 %
619 % Directly requesting 'Sinc', 'Jinc' function as a filter will force the use
620 % of function without any windowing, or promotion for cylindrical usage. This
621 % is not recommended, except by image processing experts, especially as part
622 % of expert option filter function selection.
623 %
624 % Two forms of the 'Sinc' function are available: Sinc and SincFast. Sinc is
625 % computed using the traditional sin(pi*x)/(pi*x); it is selected if the user
626 % specifically specifies the use of a Sinc filter. SincFast uses highly
627 % accurate (and fast) polynomial (low Q) and rational (high Q) approximations,
628 % and will be used by default in most cases.
629 %
630 % The Lanczos filter is a special 3-lobed Sinc-windowed Sinc filter (promoted
631 % to Jinc-windowed Jinc for cylindrical (Elliptical Weighted Average) use).
632 % The Sinc version is the most popular windowed filter.
633 %
634 % LanczosSharp is a slightly sharpened (blur=0.9812505644269356 < 1) form of
635 % the Lanczos filter, specifically designed for EWA distortion (as a
636 % Jinc-Jinc); it can also be used as a slightly sharper orthogonal Lanczos
637 % (Sinc-Sinc) filter. The chosen blur value comes as close as possible to
638 % satisfying the following condition without changing the character of the
639 % corresponding EWA filter:
640 %
641 % 'No-Op' Vertical and Horizontal Line Preservation Condition: Images with
642 % only vertical or horizontal features are preserved when performing 'no-op"
643 % with EWA distortion.
644 %
645 % The Lanczos2 and Lanczos2Sharp filters are 2-lobe versions of the Lanczos
646 % filters. The 'sharp' version uses a blur factor of 0.9549963639785485,
647 % again chosen because the resulting EWA filter comes as close as possible to
648 % satisfying the above condition.
649 %
650 % Robidoux is another filter tuned for EWA. It is the Keys cubic filter
651 % defined by B=(228 - 108 sqrt(2))/199. Robidoux satisfies the "'No-Op'
652 % Vertical and Horizontal Line Preservation Condition" exactly, and it
653 % moderately blurs high frequency 'pixel-hash' patterns under no-op. It turns
654 % out to be close to both Mitchell and Lanczos2Sharp. For example, its first
655 % crossing is at (36 sqrt(2) + 123)/(72 sqrt(2) + 47), almost the same as the
656 % first crossing of Mitchell and Lanczos2Sharp.
657 %
658 % RodidouxSharp is a slightly sharper version of Rodidoux, some believe it
659 % is too sharp. It is designed to minimize the maximum possible change in
660 % a pixel value which is at one of the extremes (e.g., 0 or 255) under no-op
661 % conditions. Amazingly Mitchell falls roughly between Rodidoux and
662 % RodidouxSharp, though this seems to have been pure coincidence.
663 %
664 % 'EXPERT' OPTIONS:
665 %
666 % These artifact "defines" are not recommended for production use without
667 % expert knowledge of resampling, filtering, and the effects they have on the
668 % resulting resampled (resized or distorted) image.
669 %
670 % They can be used to override any and all filter default, and it is
671 % recommended you make good use of "filter:verbose" to make sure that the
672 % overall effect of your selection (before and after) is as expected.
673 %
674 % "filter:verbose" controls whether to output the exact results of the
675 % filter selections made, as well as plotting data for graphing the
676 % resulting filter over the filters support range.
677 %
678 % "filter:filter" select the main function associated with this filter
679 % name, as the weighting function of the filter. This can be used to
680 % set a windowing function as a weighting function, for special
681 % purposes, such as graphing.
682 %
683 % If a "filter:window" operation has not been provided, a 'Box'
684 % windowing function will be set to denote that no windowing function is
685 % being used.
686 %
687 % "filter:window" Select this windowing function for the filter. While any
688 % filter could be used as a windowing function, using the 'first lobe' of
689 % that filter over the whole support window, using a non-windowing
690 % function is not advisible. If no weighting filter function is specified
691 % a 'SincFast' filter is used.
692 %
693 % "filter:lobes" Number of lobes to use for the Sinc/Jinc filter. This a
694 % simpler method of setting filter support size that will correctly
695 % handle the Sinc/Jinc switch for an operators filtering requirements.
696 % Only integers should be given.
697 %
698 % "filter:support" Set the support size for filtering to the size given.
699 % This not recommended for Sinc/Jinc windowed filters (lobes should be
700 % used instead). This will override any 'filter:lobes' option.
701 %
702 % "filter:win-support" Scale windowing function to this size instead. This
703 % causes the windowing (or self-windowing Lagrange filter) to act is if
704 % the support window it much much larger than what is actually supplied
705 % to the calling operator. The filter however is still clipped to the
706 % real support size given, by the support range supplied to the caller.
707 % If unset this will equal the normal filter support size.
708 %
709 % "filter:blur" Scale the filter and support window by this amount. A value
710 % of > 1 will generally result in a more blurred image with more ringing
711 % effects, while a value <1 will sharpen the resulting image with more
712 % aliasing effects.
713 %
714 % "filter:sigma" The sigma value to use for the Gaussian filter only.
715 % Defaults to '1/2'. Using a different sigma effectively provides a
716 % method of using the filter as a 'blur' convolution. Particularly when
717 % using it for Distort.
718 %
719 % "filter:b"
720 % "filter:c" Override the preset B,C values for a Cubic filter.
721 % If only one of these are given it is assumes to be a 'Keys' type of
722 % filter such that B+2C=1, where Keys 'alpha' value = C.
723 %
724 % Examples:
725 %
726 % Set a true un-windowed Sinc filter with 10 lobes (very slow):
727 % -define filter:filter=Sinc
728 % -define filter:lobes=8
729 %
730 % Set an 8 lobe Lanczos (Sinc or Jinc) filter:
731 % -filter Lanczos
732 % -define filter:lobes=8
733 %
734 % The format of the AcquireResizeFilter method is:
735 %
736 % ResizeFilter *AcquireResizeFilter(const Image *image,
737 % const FilterType filter_type,const MagickBooleanType cylindrical,
738 % ExceptionInfo *exception)
739 %
740 % A description of each parameter follows:
741 %
742 % o image: the image.
743 %
744 % o filter: the filter type, defining a preset filter, window and support.
745 % The artifact settings listed above will override those selections.
746 %
747 % o blur: blur the filter by this amount, use 1.0 if unknown. Image
748 % artifact "filter:blur" will override this API call usage, including any
749 % internal change (such as for cylindrical usage).
750 %
751 % o radial: use a 1D orthogonal filter (Sinc) or 2D cylindrical (radial)
752 % filter (Jinc).
753 %
754 % o exception: return any errors or warnings in this structure.
755 %
756 */
758  const FilterType filter,const MagickBooleanType cylindrical,
759  ExceptionInfo *exception)
760 {
761  const char
762  *artifact;
763 
764  FilterType
765  filter_type,
766  window_type;
767 
768  double
769  B,
770  C,
771  value;
772 
773  register ResizeFilter
774  *resize_filter;
775 
776  /*
777  Table Mapping given Filter, into Weighting and Windowing functions.
778  A 'Box' windowing function means its a simble non-windowed filter.
779  An 'SincFast' filter function could be upgraded to a 'Jinc' filter if a
780  "cylindrical" is requested, unless a 'Sinc' or 'SincFast' filter was
781  specifically requested by the user.
782 
783  WARNING: The order of this table must match the order of the FilterType
784  enumeration specified in "resample.h", or the filter names will not match
785  the filter being setup.
786 
787  You can check filter setups with the "filter:verbose" expert setting.
788  */
789  static struct
790  {
791  FilterType
792  filter,
793  window;
794  } const mapping[SentinelFilter] =
795  {
796  { UndefinedFilter, BoxFilter }, /* Undefined (default to Box) */
797  { PointFilter, BoxFilter }, /* SPECIAL: Nearest neighbour */
798  { BoxFilter, BoxFilter }, /* Box averaging filter */
799  { TriangleFilter, BoxFilter }, /* Linear interpolation filter */
800  { HermiteFilter, BoxFilter }, /* Hermite interpolation filter */
801  { SincFastFilter, HannFilter }, /* Hann -- cosine-sinc */
802  { SincFastFilter, HammingFilter }, /* Hamming -- '' variation */
803  { SincFastFilter, BlackmanFilter }, /* Blackman -- 2*cosine-sinc */
804  { GaussianFilter, BoxFilter }, /* Gaussian blur filter */
805  { QuadraticFilter, BoxFilter }, /* Quadratic Gaussian approx */
806  { CubicFilter, BoxFilter }, /* General Cubic Filter, Spline */
807  { CatromFilter, BoxFilter }, /* Cubic-Keys interpolator */
808  { MitchellFilter, BoxFilter }, /* 'Ideal' Cubic-Keys filter */
809  { JincFilter, BoxFilter }, /* Raw 3-lobed Jinc function */
810  { SincFilter, BoxFilter }, /* Raw 4-lobed Sinc function */
811  { SincFastFilter, BoxFilter }, /* Raw fast sinc ("Pade"-type) */
812  { SincFastFilter, KaiserFilter }, /* Kaiser -- square root-sinc */
813  { LanczosFilter, WelchFilter }, /* Welch -- parabolic (3 lobe) */
814  { SincFastFilter, CubicFilter }, /* Parzen -- cubic-sinc */
815  { SincFastFilter, BohmanFilter }, /* Bohman -- 2*cosine-sinc */
816  { SincFastFilter, TriangleFilter }, /* Bartlett -- triangle-sinc */
817  { LagrangeFilter, BoxFilter }, /* Lagrange self-windowing */
818  { LanczosFilter, LanczosFilter }, /* Lanczos Sinc-Sinc filters */
819  { LanczosSharpFilter, LanczosSharpFilter }, /* | these require */
820  { Lanczos2Filter, Lanczos2Filter }, /* | special handling */
822  { RobidouxFilter, BoxFilter }, /* Cubic Keys tuned for EWA */
823  { RobidouxSharpFilter, BoxFilter }, /* Sharper Cubic Keys for EWA */
824  { LanczosFilter, CosineFilter }, /* Cosine window (3 lobes) */
825  { SplineFilter, BoxFilter }, /* Spline Cubic Filter */
826  { LanczosRadiusFilter, LanczosFilter }, /* Lanczos with integer radius */
827  { CubicSplineFilter, BoxFilter }, /* CubicSpline (2/3/4 lobes) */
828  };
829  /*
830  Table mapping the filter/window from the above table to an actual function.
831  The default support size for that filter as a weighting function, the range
832  to scale with to use that function as a sinc windowing function, (typ 1.0).
833 
834  Note that the filter_type -> function is 1 to 1 except for Sinc(),
835  SincFast(), and CubicBC() functions, which may have multiple filter to
836  function associations.
837 
838  See "filter:verbose" handling below for the function -> filter mapping.
839  */
840  static struct
841  {
842  double
843  (*function)(const double,const ResizeFilter*),
844  support, /* Default lobes/support size of the weighting filter. */
845  scale, /* Support when function used as a windowing function
846  Typically equal to the location of the first zero crossing. */
847  B,C; /* BC-spline coefficients, ignored if not a CubicBC filter. */
848  ResizeWeightingFunctionType weightingFunctionType;
849  } const filters[SentinelFilter] =
850  {
851  /* .--- support window (if used as a Weighting Function)
852  | .--- first crossing (if used as a Windowing Function)
853  | | .--- B value for Cubic Function
854  | | | .---- C value for Cubic Function
855  | | | | */
856  { Box, 0.5, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Undefined (default to Box) */
857  { Box, 0.0, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Point (special handling) */
858  { Box, 0.5, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Box */
859  { Triangle, 1.0, 1.0, 0.0, 0.0, TriangleWeightingFunction }, /* Triangle */
860  { CubicBC, 1.0, 1.0, 0.0, 0.0, CubicBCWeightingFunction }, /* Hermite (cubic B=C=0) */
861  { Hann, 1.0, 1.0, 0.0, 0.0, HannWeightingFunction }, /* Hann, cosine window */
862  { Hamming, 1.0, 1.0, 0.0, 0.0, HammingWeightingFunction }, /* Hamming, '' variation */
863  { Blackman, 1.0, 1.0, 0.0, 0.0, BlackmanWeightingFunction }, /* Blackman, 2*cosine window */
864  { Gaussian, 2.0, 1.5, 0.0, 0.0, GaussianWeightingFunction }, /* Gaussian */
865  { Quadratic, 1.5, 1.5, 0.0, 0.0, QuadraticWeightingFunction },/* Quadratic gaussian */
866  { CubicBC, 2.0, 2.0, 1.0, 0.0, CubicBCWeightingFunction }, /* General Cubic Filter */
867  { CubicBC, 2.0, 1.0, 0.0, 0.5, CubicBCWeightingFunction }, /* Catmull-Rom (B=0,C=1/2) */
868  { CubicBC, 2.0, 8.0/7.0, 1./3., 1./3., CubicBCWeightingFunction }, /* Mitchell (B=C=1/3) */
869  { Jinc, 3.0, 1.2196698912665045, 0.0, 0.0, JincWeightingFunction }, /* Raw 3-lobed Jinc */
870  { Sinc, 4.0, 1.0, 0.0, 0.0, SincWeightingFunction }, /* Raw 4-lobed Sinc */
871  { SincFast, 4.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Raw fast sinc ("Pade"-type) */
872  { Kaiser, 1.0, 1.0, 0.0, 0.0, KaiserWeightingFunction }, /* Kaiser (square root window) */
873  { Welch, 1.0, 1.0, 0.0, 0.0, WelchWeightingFunction }, /* Welch (parabolic window) */
874  { CubicBC, 2.0, 2.0, 1.0, 0.0, CubicBCWeightingFunction }, /* Parzen (B-Spline window) */
875  { Bohman, 1.0, 1.0, 0.0, 0.0, BohmanWeightingFunction }, /* Bohman, 2*Cosine window */
876  { Triangle, 1.0, 1.0, 0.0, 0.0, TriangleWeightingFunction }, /* Bartlett (triangle window) */
877  { Lagrange, 2.0, 1.0, 0.0, 0.0, LagrangeWeightingFunction }, /* Lagrange sinc approximation */
878  { SincFast, 3.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, 3-lobed Sinc-Sinc */
879  { SincFast, 3.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, Sharpened */
880  { SincFast, 2.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, 2-lobed */
881  { SincFast, 2.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos2, sharpened */
882  /* Robidoux: Keys cubic close to Lanczos2D sharpened */
883  { CubicBC, 2.0, 1.1685777620836932,
884  0.37821575509399867, 0.31089212245300067, CubicBCWeightingFunction },
885  /* RobidouxSharp: Sharper version of Robidoux */
886  { CubicBC, 2.0, 1.105822933719019,
887  0.2620145123990142, 0.3689927438004929, CubicBCWeightingFunction },
888  { Cosine, 1.0, 1.0, 0.0, 0.0, CosineWeightingFunction }, /* Low level cosine window */
889  { CubicBC, 2.0, 2.0, 1.0, 0.0, CubicBCWeightingFunction }, /* Cubic B-Spline (B=1,C=0) */
890  { SincFast, 3.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, Interger Radius */
891  { CubicSpline,2.0, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Spline Lobes 2-lobed */
892  };
893  /*
894  The known zero crossings of the Jinc() or more accurately the Jinc(x*PI)
895  function being used as a filter. It is used by the "filter:lobes" expert
896  setting and for 'lobes' for Jinc functions in the previous table. This way
897  users do not have to deal with the highly irrational lobe sizes of the Jinc
898  filter.
899 
900  Values taken from
901  http://cose.math.bas.bg/webMathematica/webComputing/BesselZeros.jsp
902  using Jv-function with v=1, then dividing by PI.
903  */
904  static double
905  jinc_zeros[16] =
906  {
907  1.2196698912665045,
908  2.2331305943815286,
909  3.2383154841662362,
910  4.2410628637960699,
911  5.2427643768701817,
912  6.2439216898644877,
913  7.2447598687199570,
914  8.2453949139520427,
915  9.2458926849494673,
916  10.246293348754916,
917  11.246622794877883,
918  12.246898461138105,
919  13.247132522181061,
920  14.247333735806849,
921  15.247508563037300,
922  16.247661874700962
923  };
924 
925  /*
926  Allocate resize filter.
927  */
928  assert(image != (const Image *) NULL);
929  assert(image->signature == MagickCoreSignature);
930  if (image->debug != MagickFalse)
931  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
932  assert(UndefinedFilter < filter && filter < SentinelFilter);
933  assert(exception != (ExceptionInfo *) NULL);
934  assert(exception->signature == MagickCoreSignature);
935  (void) exception;
936  resize_filter=(ResizeFilter *) AcquireCriticalMemory(sizeof(*resize_filter));
937  (void) memset(resize_filter,0,sizeof(*resize_filter));
938  /*
939  Defaults for the requested filter.
940  */
941  filter_type=mapping[filter].filter;
942  window_type=mapping[filter].window;
943  resize_filter->blur=1.0;
944  /* Promote 1D Windowed Sinc Filters to a 2D Windowed Jinc filters */
945  if ((cylindrical != MagickFalse) && (filter_type == SincFastFilter) &&
946  (filter != SincFastFilter))
947  filter_type=JincFilter; /* 1D Windowed Sinc => 2D Windowed Jinc filters */
948 
949  /* Expert filter setting override */
950  artifact=GetImageArtifact(image,"filter:filter");
951  if (IsStringTrue(artifact) != MagickFalse)
952  {
953  ssize_t
954  option;
955 
957  if ((UndefinedFilter < option) && (option < SentinelFilter))
958  { /* Raw filter request - no window function. */
959  filter_type=(FilterType) option;
960  window_type=BoxFilter;
961  }
962  /* Filter override with a specific window function. */
963  artifact=GetImageArtifact(image,"filter:window");
964  if (artifact != (const char *) NULL)
965  {
967  if ((UndefinedFilter < option) && (option < SentinelFilter))
968  window_type=(FilterType) option;
969  }
970  }
971  else
972  {
973  /* Window specified, but no filter function? Assume Sinc/Jinc. */
974  artifact=GetImageArtifact(image,"filter:window");
975  if (artifact != (const char *) NULL)
976  {
977  ssize_t
978  option;
979 
981  if ((UndefinedFilter < option) && (option < SentinelFilter))
982  {
983  filter_type= cylindrical != MagickFalse ? JincFilter
984  : SincFastFilter;
985  window_type=(FilterType) option;
986  }
987  }
988  }
989 
990  /* Assign the real functions to use for the filters selected. */
991  resize_filter->filter=filters[filter_type].function;
992  resize_filter->support=filters[filter_type].support;
993  resize_filter->filterWeightingType=filters[filter_type].weightingFunctionType;
994  resize_filter->window=filters[window_type].function;
995  resize_filter->windowWeightingType=filters[window_type].weightingFunctionType;
996  resize_filter->scale=filters[window_type].scale;
997  resize_filter->signature=MagickCoreSignature;
998 
999  /* Filter Modifications for orthogonal/cylindrical usage */
1000  if (cylindrical != MagickFalse)
1001  switch (filter_type)
1002  {
1003  case BoxFilter:
1004  /* Support for Cylindrical Box should be sqrt(2)/2 */
1005  resize_filter->support=(double) MagickSQ1_2;
1006  break;
1007  case LanczosFilter:
1008  case LanczosSharpFilter:
1009  case Lanczos2Filter:
1010  case Lanczos2SharpFilter:
1011  case LanczosRadiusFilter:
1012  resize_filter->filter=filters[JincFilter].function;
1013  resize_filter->window=filters[JincFilter].function;
1014  resize_filter->scale=filters[JincFilter].scale;
1015  /* number of lobes (support window size) remain unchanged */
1016  break;
1017  default:
1018  break;
1019  }
1020  /* Global Sharpening (regardless of orthoginal/cylindrical) */
1021  switch (filter_type)
1022  {
1023  case LanczosSharpFilter:
1024  resize_filter->blur *= 0.9812505644269356;
1025  break;
1026  case Lanczos2SharpFilter:
1027  resize_filter->blur *= 0.9549963639785485;
1028  break;
1029  /* case LanczosRadius: blur adjust is done after lobes */
1030  default:
1031  break;
1032  }
1033 
1034  /*
1035  Expert Option Modifications.
1036  */
1037 
1038  /* User Gaussian Sigma Override - no support change */
1039  if ((resize_filter->filter == Gaussian) ||
1040  (resize_filter->window == Gaussian) ) {
1041  value=0.5; /* guassian sigma default, half pixel */
1042  artifact=GetImageArtifact(image,"filter:sigma");
1043  if (artifact != (const char *) NULL)
1044  value=StringToDouble(artifact,(char **) NULL);
1045  /* Define coefficents for Gaussian */
1046  resize_filter->coefficient[0]=value; /* note sigma too */
1047  resize_filter->coefficient[1]=PerceptibleReciprocal(2.0*value*value); /* sigma scaling */
1048  resize_filter->coefficient[2]=PerceptibleReciprocal(Magick2PI*value*value);
1049  /* normalization - not actually needed or used! */
1050  if ( value > 0.5 )
1051  resize_filter->support *= 2*value; /* increase support linearly */
1052  }
1053 
1054  /* User Kaiser Alpha Override - no support change */
1055  if ((resize_filter->filter == Kaiser) ||
1056  (resize_filter->window == Kaiser) ) {
1057  value=6.5; /* default beta value for Kaiser bessel windowing function */
1058  artifact=GetImageArtifact(image,"filter:alpha"); /* FUTURE: depreciate */
1059  if (artifact != (const char *) NULL)
1060  value=StringToDouble(artifact,(char **) NULL);
1061  artifact=GetImageArtifact(image,"filter:kaiser-beta");
1062  if (artifact != (const char *) NULL)
1063  value=StringToDouble(artifact,(char **) NULL);
1064  artifact=GetImageArtifact(image,"filter:kaiser-alpha");
1065  if (artifact != (const char *) NULL)
1066  value=StringToDouble(artifact,(char **) NULL)*MagickPI;
1067  /* Define coefficents for Kaiser Windowing Function */
1068  resize_filter->coefficient[0]=value; /* alpha */
1069  resize_filter->coefficient[1]=PerceptibleReciprocal(I0(value));
1070  /* normalization */
1071  }
1072 
1073  /* Support Overrides */
1074  artifact=GetImageArtifact(image,"filter:lobes");
1075  if (artifact != (const char *) NULL)
1076  {
1077  ssize_t
1078  lobes;
1079 
1080  lobes=(ssize_t) StringToLong(artifact);
1081  if (lobes < 1)
1082  lobes=1;
1083  resize_filter->support=(double) lobes;
1084  }
1085  if (resize_filter->filter == Jinc)
1086  {
1087  /*
1088  Convert a Jinc function lobes value to a real support value.
1089  */
1090  if (resize_filter->support > 16)
1091  resize_filter->support=jinc_zeros[15]; /* largest entry in table */
1092  else
1093  resize_filter->support=jinc_zeros[((long) resize_filter->support)-1];
1094  /*
1095  Blur this filter so support is a integer value (lobes dependant).
1096  */
1097  if (filter_type == LanczosRadiusFilter)
1098  resize_filter->blur*=floor(resize_filter->support)/
1099  resize_filter->support;
1100  }
1101  /*
1102  Expert blur override.
1103  */
1104  artifact=GetImageArtifact(image,"filter:blur");
1105  if (artifact != (const char *) NULL)
1106  resize_filter->blur*=StringToDouble(artifact,(char **) NULL);
1107  if (resize_filter->blur < MagickEpsilon)
1108  resize_filter->blur=(double) MagickEpsilon;
1109  /*
1110  Expert override of the support setting.
1111  */
1112  artifact=GetImageArtifact(image,"filter:support");
1113  if (artifact != (const char *) NULL)
1114  resize_filter->support=fabs(StringToDouble(artifact,(char **) NULL));
1115  /*
1116  Scale windowing function separately to the support 'clipping' window
1117  that calling operator is planning to actually use. (Expert override)
1118  */
1119  resize_filter->window_support=resize_filter->support; /* default */
1120  artifact=GetImageArtifact(image,"filter:win-support");
1121  if (artifact != (const char *) NULL)
1122  resize_filter->window_support=fabs(StringToDouble(artifact,(char **) NULL));
1123  /*
1124  Adjust window function scaling to match windowing support for weighting
1125  function. This avoids a division on every filter call.
1126  */
1127  resize_filter->scale/=resize_filter->window_support;
1128  /*
1129  * Set Cubic Spline B,C values, calculate Cubic coefficients.
1130  */
1131  B=0.0;
1132  C=0.0;
1133  if ((resize_filter->filter == CubicBC) ||
1134  (resize_filter->window == CubicBC) )
1135  {
1136  B=filters[filter_type].B;
1137  C=filters[filter_type].C;
1138  if (filters[window_type].function == CubicBC)
1139  {
1140  B=filters[window_type].B;
1141  C=filters[window_type].C;
1142  }
1143  artifact=GetImageArtifact(image,"filter:b");
1144  if (artifact != (const char *) NULL)
1145  {
1146  B=StringToDouble(artifact,(char **) NULL);
1147  C=(1.0-B)/2.0; /* Calculate C to get a Keys cubic filter. */
1148  artifact=GetImageArtifact(image,"filter:c"); /* user C override */
1149  if (artifact != (const char *) NULL)
1150  C=StringToDouble(artifact,(char **) NULL);
1151  }
1152  else
1153  {
1154  artifact=GetImageArtifact(image,"filter:c");
1155  if (artifact != (const char *) NULL)
1156  {
1157  C=StringToDouble(artifact,(char **) NULL);
1158  B=1.0-2.0*C; /* Calculate B to get a Keys cubic filter. */
1159  }
1160  }
1161  {
1162  const double
1163  twoB = B+B;
1164 
1165  /*
1166  Convert B,C values into Cubic Coefficents. See CubicBC().
1167  */
1168  resize_filter->coefficient[0]=1.0-(1.0/3.0)*B;
1169  resize_filter->coefficient[1]=-3.0+twoB+C;
1170  resize_filter->coefficient[2]=2.0-1.5*B-C;
1171  resize_filter->coefficient[3]=(4.0/3.0)*B+4.0*C;
1172  resize_filter->coefficient[4]=-8.0*C-twoB;
1173  resize_filter->coefficient[5]=B+5.0*C;
1174  resize_filter->coefficient[6]=(-1.0/6.0)*B-C;
1175  }
1176  }
1177 
1178  /*
1179  Expert Option Request for verbose details of the resulting filter.
1180  */
1181 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1182  #pragma omp master
1183  {
1184 #endif
1185  if (IsStringTrue(GetImageArtifact(image,"filter:verbose")) != MagickFalse)
1186  {
1187  double
1188  support,
1189  x;
1190 
1191  /*
1192  Set the weighting function properly when the weighting function
1193  may not exactly match the filter of the same name. EG: a Point
1194  filter is really uses a Box weighting function with a different
1195  support than is typically used.
1196  */
1197  if (resize_filter->filter == Box) filter_type=BoxFilter;
1198  if (resize_filter->filter == Sinc) filter_type=SincFilter;
1199  if (resize_filter->filter == SincFast) filter_type=SincFastFilter;
1200  if (resize_filter->filter == Jinc) filter_type=JincFilter;
1201  if (resize_filter->filter == CubicBC) filter_type=CubicFilter;
1202  if (resize_filter->window == Box) window_type=BoxFilter;
1203  if (resize_filter->window == Sinc) window_type=SincFilter;
1204  if (resize_filter->window == SincFast) window_type=SincFastFilter;
1205  if (resize_filter->window == Jinc) window_type=JincFilter;
1206  if (resize_filter->window == CubicBC) window_type=CubicFilter;
1207  /*
1208  Report Filter Details.
1209  */
1210  support=GetResizeFilterSupport(resize_filter); /* practical_support */
1211  (void) FormatLocaleFile(stdout,
1212  "# Resampling Filter (for graphing)\n#\n");
1213  (void) FormatLocaleFile(stdout,"# filter = %s\n",
1215  (void) FormatLocaleFile(stdout,"# window = %s\n",
1217  (void) FormatLocaleFile(stdout,"# support = %.*g\n",
1218  GetMagickPrecision(),(double) resize_filter->support);
1219  (void) FormatLocaleFile(stdout,"# window-support = %.*g\n",
1220  GetMagickPrecision(),(double) resize_filter->window_support);
1221  (void) FormatLocaleFile(stdout,"# scale-blur = %.*g\n",
1222  GetMagickPrecision(),(double)resize_filter->blur);
1223  if ((filter_type == GaussianFilter) || (window_type == GaussianFilter))
1224  (void) FormatLocaleFile(stdout,"# gaussian-sigma = %.*g\n",
1225  GetMagickPrecision(),(double)resize_filter->coefficient[0]);
1226  if ( filter_type == KaiserFilter || window_type == KaiserFilter )
1227  (void) FormatLocaleFile(stdout,"# kaiser-beta = %.*g\n",
1228  GetMagickPrecision(),(double)resize_filter->coefficient[0]);
1229  (void) FormatLocaleFile(stdout,"# practical-support = %.*g\n",
1230  GetMagickPrecision(), (double)support);
1231  if ( filter_type == CubicFilter || window_type == CubicFilter )
1232  (void) FormatLocaleFile(stdout,"# B,C = %.*g,%.*g\n",
1233  GetMagickPrecision(),(double)B, GetMagickPrecision(),(double)C);
1234  (void) FormatLocaleFile(stdout,"\n");
1235  /*
1236  Output values of resulting filter graph -- for graphing filter result.
1237  */
1238  for (x=0.0; x <= support; x+=0.01f)
1239  (void) FormatLocaleFile(stdout,"%5.2lf\t%.*g\n",x,
1240  GetMagickPrecision(),(double)
1241  GetResizeFilterWeight(resize_filter,x));
1242  /*
1243  A final value so gnuplot can graph the 'stop' properly.
1244  */
1245  (void) FormatLocaleFile(stdout,"%5.2lf\t%.*g\n",support,
1246  GetMagickPrecision(),0.0);
1247  }
1248  /* Output the above once only for each image - remove setting */
1249  (void) DeleteImageArtifact((Image *) image,"filter:verbose");
1250 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1251  }
1252 #endif
1253  return(resize_filter);
1254 }
1255 
1256 /*
1257 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1258 % %
1259 % %
1260 % %
1261 % A d a p t i v e R e s i z e I m a g e %
1262 % %
1263 % %
1264 % %
1265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1266 %
1267 % AdaptiveResizeImage() adaptively resize image with pixel resampling.
1268 %
1269 % This is shortcut function for a fast interpolative resize using mesh
1270 % interpolation. It works well for small resizes of less than +/- 50%
1271 % of the original image size. For larger resizing on images a full
1272 % filtered and slower resize function should be used instead.
1273 %
1274 % The format of the AdaptiveResizeImage method is:
1275 %
1276 % Image *AdaptiveResizeImage(const Image *image,const size_t columns,
1277 % const size_t rows,ExceptionInfo *exception)
1278 %
1279 % A description of each parameter follows:
1280 %
1281 % o image: the image.
1282 %
1283 % o columns: the number of columns in the resized image.
1284 %
1285 % o rows: the number of rows in the resized image.
1286 %
1287 % o exception: return any errors or warnings in this structure.
1288 %
1289 */
1291  const size_t columns,const size_t rows,ExceptionInfo *exception)
1292 {
1293  Image
1294  *resize_image;
1295 
1296  resize_image=InterpolativeResizeImage(image,columns,rows,MeshInterpolatePixel,
1297  exception);
1298  return(resize_image);
1299 }
1300 
1301 /*
1302 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1303 % %
1304 % %
1305 % %
1306 + B e s s e l O r d e r O n e %
1307 % %
1308 % %
1309 % %
1310 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1311 %
1312 % BesselOrderOne() computes the Bessel function of x of the first kind of
1313 % order 0. This is used to create the Jinc() filter function below.
1314 %
1315 % Reduce x to |x| since j1(x)= -j1(-x), and for x in (0,8]
1316 %
1317 % j1(x) = x*j1(x);
1318 %
1319 % For x in (8,inf)
1320 %
1321 % j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
1322 %
1323 % where x1 = x-3*pi/4. Compute sin(x1) and cos(x1) as follow:
1324 %
1325 % cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
1326 % = 1/sqrt(2) * (sin(x) - cos(x))
1327 % sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
1328 % = -1/sqrt(2) * (sin(x) + cos(x))
1329 %
1330 % The format of the BesselOrderOne method is:
1331 %
1332 % double BesselOrderOne(double x)
1333 %
1334 % A description of each parameter follows:
1335 %
1336 % o x: double value.
1337 %
1338 */
1339 
1340 #undef I0
1341 static double I0(double x)
1342 {
1343  double
1344  sum,
1345  t,
1346  y;
1347 
1348  register ssize_t
1349  i;
1350 
1351  /*
1352  Zeroth order Bessel function of the first kind.
1353  */
1354  sum=1.0;
1355  y=x*x/4.0;
1356  t=y;
1357  for (i=2; t > MagickEpsilon; i++)
1358  {
1359  sum+=t;
1360  t*=y/((double) i*i);
1361  }
1362  return(sum);
1363 }
1364 
1365 #undef J1
1366 static double J1(double x)
1367 {
1368  double
1369  p,
1370  q;
1371 
1372  register ssize_t
1373  i;
1374 
1375  static const double
1376  Pone[] =
1377  {
1378  0.581199354001606143928050809e+21,
1379  -0.6672106568924916298020941484e+20,
1380  0.2316433580634002297931815435e+19,
1381  -0.3588817569910106050743641413e+17,
1382  0.2908795263834775409737601689e+15,
1383  -0.1322983480332126453125473247e+13,
1384  0.3413234182301700539091292655e+10,
1385  -0.4695753530642995859767162166e+7,
1386  0.270112271089232341485679099e+4
1387  },
1388  Qone[] =
1389  {
1390  0.11623987080032122878585294e+22,
1391  0.1185770712190320999837113348e+20,
1392  0.6092061398917521746105196863e+17,
1393  0.2081661221307607351240184229e+15,
1394  0.5243710262167649715406728642e+12,
1395  0.1013863514358673989967045588e+10,
1396  0.1501793594998585505921097578e+7,
1397  0.1606931573481487801970916749e+4,
1398  0.1e+1
1399  };
1400 
1401  p=Pone[8];
1402  q=Qone[8];
1403  for (i=7; i >= 0; i--)
1404  {
1405  p=p*x*x+Pone[i];
1406  q=q*x*x+Qone[i];
1407  }
1408  return(p/q);
1409 }
1410 
1411 #undef P1
1412 static double P1(double x)
1413 {
1414  double
1415  p,
1416  q;
1417 
1418  register ssize_t
1419  i;
1420 
1421  static const double
1422  Pone[] =
1423  {
1424  0.352246649133679798341724373e+5,
1425  0.62758845247161281269005675e+5,
1426  0.313539631109159574238669888e+5,
1427  0.49854832060594338434500455e+4,
1428  0.2111529182853962382105718e+3,
1429  0.12571716929145341558495e+1
1430  },
1431  Qone[] =
1432  {
1433  0.352246649133679798068390431e+5,
1434  0.626943469593560511888833731e+5,
1435  0.312404063819041039923015703e+5,
1436  0.4930396490181088979386097e+4,
1437  0.2030775189134759322293574e+3,
1438  0.1e+1
1439  };
1440 
1441  p=Pone[5];
1442  q=Qone[5];
1443  for (i=4; i >= 0; i--)
1444  {
1445  p=p*(8.0/x)*(8.0/x)+Pone[i];
1446  q=q*(8.0/x)*(8.0/x)+Qone[i];
1447  }
1448  return(p/q);
1449 }
1450 
1451 #undef Q1
1452 static double Q1(double x)
1453 {
1454  double
1455  p,
1456  q;
1457 
1458  register ssize_t
1459  i;
1460 
1461  static const double
1462  Pone[] =
1463  {
1464  0.3511751914303552822533318e+3,
1465  0.7210391804904475039280863e+3,
1466  0.4259873011654442389886993e+3,
1467  0.831898957673850827325226e+2,
1468  0.45681716295512267064405e+1,
1469  0.3532840052740123642735e-1
1470  },
1471  Qone[] =
1472  {
1473  0.74917374171809127714519505e+4,
1474  0.154141773392650970499848051e+5,
1475  0.91522317015169922705904727e+4,
1476  0.18111867005523513506724158e+4,
1477  0.1038187585462133728776636e+3,
1478  0.1e+1
1479  };
1480 
1481  p=Pone[5];
1482  q=Qone[5];
1483  for (i=4; i >= 0; i--)
1484  {
1485  p=p*(8.0/x)*(8.0/x)+Pone[i];
1486  q=q*(8.0/x)*(8.0/x)+Qone[i];
1487  }
1488  return(p/q);
1489 }
1490 
1491 static double BesselOrderOne(double x)
1492 {
1493  double
1494  p,
1495  q;
1496 
1497  if (x == 0.0)
1498  return(0.0);
1499  p=x;
1500  if (x < 0.0)
1501  x=(-x);
1502  if (x < 8.0)
1503  return(p*J1(x));
1504  q=sqrt((double) (2.0/(MagickPI*x)))*(P1(x)*(1.0/sqrt(2.0)*(sin((double) x)-
1505  cos((double) x)))-8.0/x*Q1(x)*(-1.0/sqrt(2.0)*(sin((double) x)+
1506  cos((double) x))));
1507  if (p < 0.0)
1508  q=(-q);
1509  return(q);
1510 }
1511 
1512 /*
1513 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1514 % %
1515 % %
1516 % %
1517 + D e s t r o y R e s i z e F i l t e r %
1518 % %
1519 % %
1520 % %
1521 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1522 %
1523 % DestroyResizeFilter() destroy the resize filter.
1524 %
1525 % The format of the DestroyResizeFilter method is:
1526 %
1527 % ResizeFilter *DestroyResizeFilter(ResizeFilter *resize_filter)
1528 %
1529 % A description of each parameter follows:
1530 %
1531 % o resize_filter: the resize filter.
1532 %
1533 */
1535 {
1536  assert(resize_filter != (ResizeFilter *) NULL);
1537  assert(resize_filter->signature == MagickCoreSignature);
1538  resize_filter->signature=(~MagickCoreSignature);
1539  resize_filter=(ResizeFilter *) RelinquishMagickMemory(resize_filter);
1540  return(resize_filter);
1541 }
1542 
1543 /*
1544 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1545 % %
1546 % %
1547 % %
1548 + G e t R e s i z e F i l t e r S u p p o r t %
1549 % %
1550 % %
1551 % %
1552 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1553 %
1554 % GetResizeFilterSupport() return the current support window size for this
1555 % filter. Note that this may have been enlarged by filter:blur factor.
1556 %
1557 % The format of the GetResizeFilterSupport method is:
1558 %
1559 % double GetResizeFilterSupport(const ResizeFilter *resize_filter)
1560 %
1561 % A description of each parameter follows:
1562 %
1563 % o filter: Image filter to use.
1564 %
1565 */
1566 
1568  const ResizeFilter *resize_filter)
1569 {
1570  assert(resize_filter != (ResizeFilter *) NULL);
1571  assert(resize_filter->signature == MagickCoreSignature);
1572  return((double *) resize_filter->coefficient);
1573 }
1574 
1575 MagickPrivate double GetResizeFilterBlur(const ResizeFilter *resize_filter)
1576 {
1577  assert(resize_filter != (ResizeFilter *) NULL);
1578  assert(resize_filter->signature == MagickCoreSignature);
1579  return(resize_filter->blur);
1580 }
1581 
1583 {
1584  assert(resize_filter != (ResizeFilter *) NULL);
1585  assert(resize_filter->signature == MagickCoreSignature);
1586  return(resize_filter->scale);
1587 }
1588 
1590  const ResizeFilter *resize_filter)
1591 {
1592  assert(resize_filter != (ResizeFilter *) NULL);
1593  assert(resize_filter->signature == MagickCoreSignature);
1594  return(resize_filter->window_support);
1595 }
1596 
1598  const ResizeFilter *resize_filter)
1599 {
1600  assert(resize_filter != (ResizeFilter *) NULL);
1601  assert(resize_filter->signature == MagickCoreSignature);
1602  return(resize_filter->filterWeightingType);
1603 }
1604 
1606  const ResizeFilter *resize_filter)
1607 {
1608  assert(resize_filter != (ResizeFilter *) NULL);
1609  assert(resize_filter->signature == MagickCoreSignature);
1610  return(resize_filter->windowWeightingType);
1611 }
1612 
1614 {
1615  assert(resize_filter != (ResizeFilter *) NULL);
1616  assert(resize_filter->signature == MagickCoreSignature);
1617  return(resize_filter->support*resize_filter->blur);
1618 }
1619 
1620 /*
1621 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1622 % %
1623 % %
1624 % %
1625 + G e t R e s i z e F i l t e r W e i g h t %
1626 % %
1627 % %
1628 % %
1629 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1630 %
1631 % GetResizeFilterWeight evaluates the specified resize filter at the point x
1632 % which usally lies between zero and the filters current 'support' and
1633 % returns the weight of the filter function at that point.
1634 %
1635 % The format of the GetResizeFilterWeight method is:
1636 %
1637 % double GetResizeFilterWeight(const ResizeFilter *resize_filter,
1638 % const double x)
1639 %
1640 % A description of each parameter follows:
1641 %
1642 % o filter: the filter type.
1643 %
1644 % o x: the point.
1645 %
1646 */
1648  const double x)
1649 {
1650  double
1651  scale,
1652  weight,
1653  x_blur;
1654 
1655  /*
1656  Windowing function - scale the weighting filter by this amount.
1657  */
1658  assert(resize_filter != (ResizeFilter *) NULL);
1659  assert(resize_filter->signature == MagickCoreSignature);
1660  x_blur=fabs((double) x)/resize_filter->blur; /* X offset with blur scaling */
1661  if ((resize_filter->window_support < MagickEpsilon) ||
1662  (resize_filter->window == Box))
1663  scale=1.0; /* Point or Box Filter -- avoid division by zero */
1664  else
1665  {
1666  scale=resize_filter->scale;
1667  scale=resize_filter->window(x_blur*scale,resize_filter);
1668  }
1669  weight=scale*resize_filter->filter(x_blur,resize_filter);
1670  return(weight);
1671 }
1672 
1673 /*
1674 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1675 % %
1676 % %
1677 % %
1678 % I n t e r p o l a t i v e R e s i z e I m a g e %
1679 % %
1680 % %
1681 % %
1682 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1683 %
1684 % InterpolativeResizeImage() resizes an image using the specified
1685 % interpolation method.
1686 %
1687 % The format of the InterpolativeResizeImage method is:
1688 %
1689 % Image *InterpolativeResizeImage(const Image *image,const size_t columns,
1690 % const size_t rows,const PixelInterpolateMethod method,
1691 % ExceptionInfo *exception)
1692 %
1693 % A description of each parameter follows:
1694 %
1695 % o image: the image.
1696 %
1697 % o columns: the number of columns in the resized image.
1698 %
1699 % o rows: the number of rows in the resized image.
1700 %
1701 % o method: the pixel interpolation method.
1702 %
1703 % o exception: return any errors or warnings in this structure.
1704 %
1705 */
1707  const size_t columns,const size_t rows,const PixelInterpolateMethod method,
1708  ExceptionInfo *exception)
1709 {
1710 #define InterpolativeResizeImageTag "Resize/Image"
1711 
1712  CacheView
1713  *image_view,
1714  *resize_view;
1715 
1716  Image
1717  *resize_image;
1718 
1720  status;
1721 
1723  progress;
1724 
1725  PointInfo
1726  scale;
1727 
1728  ssize_t
1729  y;
1730 
1731  /*
1732  Interpolatively resize image.
1733  */
1734  assert(image != (const Image *) NULL);
1735  assert(image->signature == MagickCoreSignature);
1736  if (image->debug != MagickFalse)
1737  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1738  assert(exception != (ExceptionInfo *) NULL);
1739  assert(exception->signature == MagickCoreSignature);
1740  if ((columns == 0) || (rows == 0))
1741  ThrowImageException(ImageError,"NegativeOrZeroImageSize");
1742  if ((columns == image->columns) && (rows == image->rows))
1743  return(CloneImage(image,0,0,MagickTrue,exception));
1744  resize_image=CloneImage(image,columns,rows,MagickTrue,exception);
1745  if (resize_image == (Image *) NULL)
1746  return((Image *) NULL);
1747  if (SetImageStorageClass(resize_image,DirectClass,exception) == MagickFalse)
1748  {
1749  resize_image=DestroyImage(resize_image);
1750  return((Image *) NULL);
1751  }
1752  status=MagickTrue;
1753  progress=0;
1754  image_view=AcquireVirtualCacheView(image,exception);
1755  resize_view=AcquireAuthenticCacheView(resize_image,exception);
1756  scale.x=(double) image->columns/resize_image->columns;
1757  scale.y=(double) image->rows/resize_image->rows;
1758 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1759  #pragma omp parallel for schedule(static) shared(progress,status) \
1760  magick_number_threads(image,resize_image,resize_image->rows,1)
1761 #endif
1762  for (y=0; y < (ssize_t) resize_image->rows; y++)
1763  {
1764  PointInfo
1765  offset;
1766 
1767  register Quantum
1768  *magick_restrict q;
1769 
1770  register ssize_t
1771  x;
1772 
1773  if (status == MagickFalse)
1774  continue;
1775  q=QueueCacheViewAuthenticPixels(resize_view,0,y,resize_image->columns,1,
1776  exception);
1777  if (q == (Quantum *) NULL)
1778  continue;
1779  offset.y=((double) y+0.5)*scale.y-0.5;
1780  for (x=0; x < (ssize_t) resize_image->columns; x++)
1781  {
1782  register ssize_t
1783  i;
1784 
1785  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1786  {
1787  PixelChannel
1788  channel;
1789 
1790  PixelTrait
1791  resize_traits,
1792  traits;
1793 
1794  channel=GetPixelChannelChannel(image,i);
1795  traits=GetPixelChannelTraits(image,channel);
1796  resize_traits=GetPixelChannelTraits(resize_image,channel);
1797  if ((traits == UndefinedPixelTrait) ||
1798  (resize_traits == UndefinedPixelTrait))
1799  continue;
1800  offset.x=((double) x+0.5)*scale.x-0.5;
1801  status=InterpolatePixelChannels(image,image_view,resize_image,method,
1802  offset.x,offset.y,q,exception);
1803  if (status == MagickFalse)
1804  break;
1805  }
1806  q+=GetPixelChannels(resize_image);
1807  }
1808  if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse)
1809  status=MagickFalse;
1810  if (image->progress_monitor != (MagickProgressMonitor) NULL)
1811  {
1813  proceed;
1814 
1815 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1816  #pragma omp critical (MagickCore_InterpolativeResizeImage)
1817 #endif
1818  proceed=SetImageProgress(image,InterpolativeResizeImageTag,progress++,
1819  image->rows);
1820  if (proceed == MagickFalse)
1821  status=MagickFalse;
1822  }
1823  }
1824  resize_view=DestroyCacheView(resize_view);
1825  image_view=DestroyCacheView(image_view);
1826  if (status == MagickFalse)
1827  resize_image=DestroyImage(resize_image);
1828  return(resize_image);
1829 }
1830 #if defined(MAGICKCORE_LQR_DELEGATE)
1831 
1832 /*
1833 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1834 % %
1835 % %
1836 % %
1837 % L i q u i d R e s c a l e I m a g e %
1838 % %
1839 % %
1840 % %
1841 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1842 %
1843 % LiquidRescaleImage() rescales image with seam carving.
1844 %
1845 % The format of the LiquidRescaleImage method is:
1846 %
1847 % Image *LiquidRescaleImage(const Image *image,const size_t columns,
1848 % const size_t rows,const double delta_x,const double rigidity,
1849 % ExceptionInfo *exception)
1850 %
1851 % A description of each parameter follows:
1852 %
1853 % o image: the image.
1854 %
1855 % o columns: the number of columns in the rescaled image.
1856 %
1857 % o rows: the number of rows in the rescaled image.
1858 %
1859 % o delta_x: maximum seam transversal step (0 means straight seams).
1860 %
1861 % o rigidity: introduce a bias for non-straight seams (typically 0).
1862 %
1863 % o exception: return any errors or warnings in this structure.
1864 %
1865 */
1866 MagickExport Image *LiquidRescaleImage(const Image *image,const size_t columns,
1867  const size_t rows,const double delta_x,const double rigidity,
1868  ExceptionInfo *exception)
1869 {
1870 #define LiquidRescaleImageTag "Rescale/Image"
1871 
1872  CacheView
1873  *image_view,
1874  *rescale_view;
1875 
1876  gfloat
1877  *packet,
1878  *pixels;
1879 
1880  Image
1881  *rescale_image;
1882 
1883  int
1884  x_offset,
1885  y_offset;
1886 
1887  LqrCarver
1888  *carver;
1889 
1890  LqrRetVal
1891  lqr_status;
1892 
1894  status;
1895 
1896  MemoryInfo
1897  *pixel_info;
1898 
1899  register gfloat
1900  *q;
1901 
1902  ssize_t
1903  y;
1904 
1905  /*
1906  Liquid rescale image.
1907  */
1908  assert(image != (const Image *) NULL);
1909  assert(image->signature == MagickCoreSignature);
1910  if (image->debug != MagickFalse)
1911  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1912  assert(exception != (ExceptionInfo *) NULL);
1913  assert(exception->signature == MagickCoreSignature);
1914  if ((columns == 0) || (rows == 0))
1915  ThrowImageException(ImageError,"NegativeOrZeroImageSize");
1916  if ((columns == image->columns) && (rows == image->rows))
1917  return(CloneImage(image,0,0,MagickTrue,exception));
1918  if ((columns <= 2) || (rows <= 2))
1919  return(ResizeImage(image,columns,rows,image->filter,exception));
1920  pixel_info=AcquireVirtualMemory(image->columns,image->rows*MaxPixelChannels*
1921  sizeof(*pixels));
1922  if (pixel_info == (MemoryInfo *) NULL)
1923  return((Image *) NULL);
1924  pixels=(gfloat *) GetVirtualMemoryBlob(pixel_info);
1925  status=MagickTrue;
1926  q=pixels;
1927  image_view=AcquireVirtualCacheView(image,exception);
1928  for (y=0; y < (ssize_t) image->rows; y++)
1929  {
1930  register const Quantum
1931  *magick_restrict p;
1932 
1933  register ssize_t
1934  x;
1935 
1936  if (status == MagickFalse)
1937  continue;
1938  p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1939  if (p == (const Quantum *) NULL)
1940  {
1941  status=MagickFalse;
1942  continue;
1943  }
1944  for (x=0; x < (ssize_t) image->columns; x++)
1945  {
1946  register ssize_t
1947  i;
1948 
1949  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1950  *q++=QuantumScale*p[i];
1951  p+=GetPixelChannels(image);
1952  }
1953  }
1954  image_view=DestroyCacheView(image_view);
1955  carver=lqr_carver_new_ext(pixels,(int) image->columns,(int) image->rows,
1956  (int) GetPixelChannels(image),LQR_COLDEPTH_32F);
1957  if (carver == (LqrCarver *) NULL)
1958  {
1959  pixel_info=RelinquishVirtualMemory(pixel_info);
1960  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1961  }
1962  lqr_carver_set_preserve_input_image(carver);
1963  lqr_status=lqr_carver_init(carver,(int) delta_x,rigidity);
1964  lqr_status=lqr_carver_resize(carver,(int) columns,(int) rows);
1965  (void) lqr_status;
1966  rescale_image=CloneImage(image,lqr_carver_get_width(carver),
1967  lqr_carver_get_height(carver),MagickTrue,exception);
1968  if (rescale_image == (Image *) NULL)
1969  {
1970  pixel_info=RelinquishVirtualMemory(pixel_info);
1971  return((Image *) NULL);
1972  }
1973  if (SetImageStorageClass(rescale_image,DirectClass,exception) == MagickFalse)
1974  {
1975  pixel_info=RelinquishVirtualMemory(pixel_info);
1976  rescale_image=DestroyImage(rescale_image);
1977  return((Image *) NULL);
1978  }
1979  rescale_view=AcquireAuthenticCacheView(rescale_image,exception);
1980  (void) lqr_carver_scan_reset(carver);
1981  while (lqr_carver_scan_ext(carver,&x_offset,&y_offset,(void **) &packet) != 0)
1982  {
1983  register Quantum
1984  *magick_restrict p;
1985 
1986  register ssize_t
1987  i;
1988 
1989  p=QueueCacheViewAuthenticPixels(rescale_view,x_offset,y_offset,1,1,
1990  exception);
1991  if (p == (Quantum *) NULL)
1992  break;
1993  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1994  {
1995  PixelChannel
1996  channel;
1997 
1998  PixelTrait
1999  rescale_traits,
2000  traits;
2001 
2002  channel=GetPixelChannelChannel(image,i);
2003  traits=GetPixelChannelTraits(image,channel);
2004  rescale_traits=GetPixelChannelTraits(rescale_image,channel);
2005  if ((traits == UndefinedPixelTrait) ||
2006  (rescale_traits == UndefinedPixelTrait))
2007  continue;
2008  SetPixelChannel(rescale_image,channel,ClampToQuantum(QuantumRange*
2009  packet[i]),p);
2010  }
2011  if (SyncCacheViewAuthenticPixels(rescale_view,exception) == MagickFalse)
2012  break;
2013  }
2014  rescale_view=DestroyCacheView(rescale_view);
2015  pixel_info=RelinquishVirtualMemory(pixel_info);
2016  lqr_carver_destroy(carver);
2017  return(rescale_image);
2018 }
2019 #else
2021  const size_t magick_unused(columns),const size_t magick_unused(rows),
2022  const double magick_unused(delta_x),const double magick_unused(rigidity),
2023  ExceptionInfo *exception)
2024 {
2025  assert(image != (const Image *) NULL);
2026  assert(image->signature == MagickCoreSignature);
2027  if (image->debug != MagickFalse)
2028  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2029  assert(exception != (ExceptionInfo *) NULL);
2030  assert(exception->signature == MagickCoreSignature);
2032  "DelegateLibrarySupportNotBuiltIn","'%s' (LQR)",image->filename);
2033  return((Image *) NULL);
2034 }
2035 #endif
2036 
2037 /*
2038 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2039 % %
2040 % %
2041 % %
2042 % M a g n i f y I m a g e %
2043 % %
2044 % %
2045 % %
2046 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2047 %
2048 % MagnifyImage() doubles the size of the image with a pixel art scaling
2049 % algorithm.
2050 %
2051 % The format of the MagnifyImage method is:
2052 %
2053 % Image *MagnifyImage(const Image *image,ExceptionInfo *exception)
2054 %
2055 % A description of each parameter follows:
2056 %
2057 % o image: the image.
2058 %
2059 % o exception: return any errors or warnings in this structure.
2060 %
2061 */
2063 {
2064 #define MagnifyImageTag "Magnify/Image"
2065 
2066  CacheView
2067  *image_view,
2068  *magnify_view;
2069 
2070  Image
2071  *magnify_image;
2072 
2074  status;
2075 
2077  progress;
2078 
2079  ssize_t
2080  y;
2081 
2082  /*
2083  Initialize magnified image attributes.
2084  */
2085  assert(image != (const Image *) NULL);
2086  assert(image->signature == MagickCoreSignature);
2087  if (image->debug != MagickFalse)
2088  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2089  assert(exception != (ExceptionInfo *) NULL);
2090  assert(exception->signature == MagickCoreSignature);
2091  magnify_image=CloneImage(image,2*image->columns,2*image->rows,MagickTrue,
2092  exception);
2093  if (magnify_image == (Image *) NULL)
2094  return((Image *) NULL);
2095  /*
2096  Magnify image.
2097  */
2098  status=MagickTrue;
2099  progress=0;
2100  image_view=AcquireVirtualCacheView(image,exception);
2101  magnify_view=AcquireAuthenticCacheView(magnify_image,exception);
2102 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2103  #pragma omp parallel for schedule(static) shared(progress,status) \
2104  magick_number_threads(image,magnify_image,image->rows,1)
2105 #endif
2106  for (y=0; y < (ssize_t) image->rows; y++)
2107  {
2108  register Quantum
2109  *magick_restrict q;
2110 
2111  register ssize_t
2112  x;
2113 
2114  if (status == MagickFalse)
2115  continue;
2116  q=QueueCacheViewAuthenticPixels(magnify_view,0,2*y,magnify_image->columns,2,
2117  exception);
2118  if (q == (Quantum *) NULL)
2119  {
2120  status=MagickFalse;
2121  continue;
2122  }
2123  /*
2124  Magnify this row of pixels.
2125  */
2126  for (x=0; x < (ssize_t) image->columns; x++)
2127  {
2129  intensity[9];
2130 
2131  register const Quantum
2132  *magick_restrict p;
2133 
2134  register Quantum
2135  *magick_restrict r;
2136 
2137  register ssize_t
2138  i;
2139 
2140  size_t
2141  channels;
2142 
2143  p=GetCacheViewVirtualPixels(image_view,x-1,y-1,3,3,exception);
2144  if (p == (const Quantum *) NULL)
2145  {
2146  status=MagickFalse;
2147  continue;
2148  }
2149  channels=GetPixelChannels(image);
2150  for (i=0; i < 9; i++)
2151  intensity[i]=GetPixelIntensity(image,p+i*channels);
2152  r=q;
2153  if ((fabs(intensity[1]-intensity[7]) < MagickEpsilon) ||
2154  (fabs(intensity[3]-intensity[5]) < MagickEpsilon))
2155  {
2156  /*
2157  Clone center pixel.
2158  */
2159  for (i=0; i < (ssize_t) channels; i++)
2160  r[i]=p[4*channels+i];
2161  r+=GetPixelChannels(magnify_image);
2162  for (i=0; i < (ssize_t) channels; i++)
2163  r[i]=p[4*channels+i];
2164  r+=GetPixelChannels(magnify_image)*(magnify_image->columns-1);
2165  for (i=0; i < (ssize_t) channels; i++)
2166  r[i]=p[4*channels+i];
2167  r+=GetPixelChannels(magnify_image);
2168  for (i=0; i < (ssize_t) channels; i++)
2169  r[i]=p[4*channels+i];
2170  }
2171  else
2172  {
2173  /*
2174  Selectively clone pixel.
2175  */
2176  if (fabs(intensity[1]-intensity[3]) < MagickEpsilon)
2177  for (i=0; i < (ssize_t) channels; i++)
2178  r[i]=p[3*channels+i];
2179  else
2180  for (i=0; i < (ssize_t) channels; i++)
2181  r[i]=p[4*channels+i];
2182  r+=GetPixelChannels(magnify_image);
2183  if (fabs(intensity[1]-intensity[5]) < MagickEpsilon)
2184  for (i=0; i < (ssize_t) channels; i++)
2185  r[i]=p[5*channels+i];
2186  else
2187  for (i=0; i < (ssize_t) channels; i++)
2188  r[i]=p[4*channels+i];
2189  r+=GetPixelChannels(magnify_image)*(magnify_image->columns-1);
2190  if (fabs(intensity[3]-intensity[7]) < MagickEpsilon)
2191  for (i=0; i < (ssize_t) channels; i++)
2192  r[i]=p[3*channels+i];
2193  else
2194  for (i=0; i < (ssize_t) channels; i++)
2195  r[i]=p[4*channels+i];
2196  r+=GetPixelChannels(magnify_image);
2197  if (fabs(intensity[5]-intensity[7]) < MagickEpsilon)
2198  for (i=0; i < (ssize_t) channels; i++)
2199  r[i]=p[5*channels+i];
2200  else
2201  for (i=0; i < (ssize_t) channels; i++)
2202  r[i]=p[4*channels+i];
2203  }
2204  q+=2*GetPixelChannels(magnify_image);
2205  }
2206  if (SyncCacheViewAuthenticPixels(magnify_view,exception) == MagickFalse)
2207  status=MagickFalse;
2208  if (image->progress_monitor != (MagickProgressMonitor) NULL)
2209  {
2211  proceed;
2212 
2213 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2214  #pragma omp critical (MagickCore_MagnifyImage)
2215 #endif
2216  proceed=SetImageProgress(image,MagnifyImageTag,progress++,image->rows);
2217  if (proceed == MagickFalse)
2218  status=MagickFalse;
2219  }
2220  }
2221  magnify_view=DestroyCacheView(magnify_view);
2222  image_view=DestroyCacheView(image_view);
2223  if (status == MagickFalse)
2224  magnify_image=DestroyImage(magnify_image);
2225  return(magnify_image);
2226 }
2227 
2228 /*
2229 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2230 % %
2231 % %
2232 % %
2233 % M i n i f y I m a g e %
2234 % %
2235 % %
2236 % %
2237 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2238 %
2239 % MinifyImage() is a convenience method that scales an image proportionally to
2240 % half its size.
2241 %
2242 % The format of the MinifyImage method is:
2243 %
2244 % Image *MinifyImage(const Image *image,ExceptionInfo *exception)
2245 %
2246 % A description of each parameter follows:
2247 %
2248 % o image: the image.
2249 %
2250 % o exception: return any errors or warnings in this structure.
2251 %
2252 */
2254 {
2255  Image
2256  *minify_image;
2257 
2258  assert(image != (Image *) NULL);
2259  assert(image->signature == MagickCoreSignature);
2260  if (image->debug != MagickFalse)
2261  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2262  assert(exception != (ExceptionInfo *) NULL);
2263  assert(exception->signature == MagickCoreSignature);
2264  minify_image=ResizeImage(image,image->columns/2,image->rows/2,SplineFilter,
2265  exception);
2266  return(minify_image);
2267 }
2268 
2269 /*
2270 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2271 % %
2272 % %
2273 % %
2274 % R e s a m p l e I m a g e %
2275 % %
2276 % %
2277 % %
2278 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2279 %
2280 % ResampleImage() resize image in terms of its pixel size, so that when
2281 % displayed at the given resolution it will be the same size in terms of
2282 % real world units as the original image at the original resolution.
2283 %
2284 % The format of the ResampleImage method is:
2285 %
2286 % Image *ResampleImage(Image *image,const double x_resolution,
2287 % const double y_resolution,const FilterType filter,
2288 % ExceptionInfo *exception)
2289 %
2290 % A description of each parameter follows:
2291 %
2292 % o image: the image to be resized to fit the given resolution.
2293 %
2294 % o x_resolution: the new image x resolution.
2295 %
2296 % o y_resolution: the new image y resolution.
2297 %
2298 % o filter: Image filter to use.
2299 %
2300 % o exception: return any errors or warnings in this structure.
2301 %
2302 */
2303 MagickExport Image *ResampleImage(const Image *image,const double x_resolution,
2304  const double y_resolution,const FilterType filter,ExceptionInfo *exception)
2305 {
2306 #define ResampleImageTag "Resample/Image"
2307 
2308  Image
2309  *resample_image;
2310 
2311  size_t
2312  height,
2313  width;
2314 
2315  /*
2316  Initialize sampled image attributes.
2317  */
2318  assert(image != (const Image *) NULL);
2319  assert(image->signature == MagickCoreSignature);
2320  if (image->debug != MagickFalse)
2321  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2322  assert(exception != (ExceptionInfo *) NULL);
2323  assert(exception->signature == MagickCoreSignature);
2324  width=(size_t) (x_resolution*image->columns/(image->resolution.x == 0.0 ?
2325  72.0 : image->resolution.x)+0.5);
2326  height=(size_t) (y_resolution*image->rows/(image->resolution.y == 0.0 ?
2327  72.0 : image->resolution.y)+0.5);
2328  resample_image=ResizeImage(image,width,height,filter,exception);
2329  if (resample_image != (Image *) NULL)
2330  {
2331  resample_image->resolution.x=x_resolution;
2332  resample_image->resolution.y=y_resolution;
2333  }
2334  return(resample_image);
2335 }
2336 
2337 /*
2338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2339 % %
2340 % %
2341 % %
2342 % R e s i z e I m a g e %
2343 % %
2344 % %
2345 % %
2346 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2347 %
2348 % ResizeImage() scales an image to the desired dimensions, using the given
2349 % filter (see AcquireFilterInfo()).
2350 %
2351 % If an undefined filter is given the filter defaults to Mitchell for a
2352 % colormapped image, a image with a matte channel, or if the image is
2353 % enlarged. Otherwise the filter defaults to a Lanczos.
2354 %
2355 % ResizeImage() was inspired by Paul Heckbert's "zoom" program.
2356 %
2357 % The format of the ResizeImage method is:
2358 %
2359 % Image *ResizeImage(Image *image,const size_t columns,const size_t rows,
2360 % const FilterType filter,ExceptionInfo *exception)
2361 %
2362 % A description of each parameter follows:
2363 %
2364 % o image: the image.
2365 %
2366 % o columns: the number of columns in the scaled image.
2367 %
2368 % o rows: the number of rows in the scaled image.
2369 %
2370 % o filter: Image filter to use.
2371 %
2372 % o exception: return any errors or warnings in this structure.
2373 %
2374 */
2375 
2376 typedef struct _ContributionInfo
2377 {
2378  double
2380 
2381  ssize_t
2384 
2386  ContributionInfo **contribution)
2387 {
2388  register ssize_t
2389  i;
2390 
2391  assert(contribution != (ContributionInfo **) NULL);
2392  for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
2393  if (contribution[i] != (ContributionInfo *) NULL)
2394  contribution[i]=(ContributionInfo *) RelinquishAlignedMemory(
2395  contribution[i]);
2396  contribution=(ContributionInfo **) RelinquishMagickMemory(contribution);
2397  return(contribution);
2398 }
2399 
2401 {
2402  register ssize_t
2403  i;
2404 
2406  **contribution;
2407 
2408  size_t
2409  number_threads;
2410 
2411  number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
2412  contribution=(ContributionInfo **) AcquireQuantumMemory(number_threads,
2413  sizeof(*contribution));
2414  if (contribution == (ContributionInfo **) NULL)
2415  return((ContributionInfo **) NULL);
2416  (void) memset(contribution,0,number_threads*sizeof(*contribution));
2417  for (i=0; i < (ssize_t) number_threads; i++)
2418  {
2419  contribution[i]=(ContributionInfo *) MagickAssumeAligned(
2420  AcquireAlignedMemory(count,sizeof(**contribution)));
2421  if (contribution[i] == (ContributionInfo *) NULL)
2422  return(DestroyContributionThreadSet(contribution));
2423  }
2424  return(contribution);
2425 }
2426 
2428  const Image *image,Image *resize_image,const double x_factor,
2429  const MagickSizeType span,MagickOffsetType *offset,ExceptionInfo *exception)
2430 {
2431 #define ResizeImageTag "Resize/Image"
2432 
2433  CacheView
2434  *image_view,
2435  *resize_view;
2436 
2437  ClassType
2438  storage_class;
2439 
2441  **magick_restrict contributions;
2442 
2444  status;
2445 
2446  double
2447  scale,
2448  support;
2449 
2450  ssize_t
2451  x;
2452 
2453  /*
2454  Apply filter to resize horizontally from image to resize image.
2455  */
2456  scale=MagickMax(1.0/x_factor+MagickEpsilon,1.0);
2457  support=scale*GetResizeFilterSupport(resize_filter);
2458  storage_class=support > 0.5 ? DirectClass : image->storage_class;
2459  if (SetImageStorageClass(resize_image,storage_class,exception) == MagickFalse)
2460  return(MagickFalse);
2461  if (support < 0.5)
2462  {
2463  /*
2464  Support too small even for nearest neighbour: Reduce to point sampling.
2465  */
2466  support=(double) 0.5;
2467  scale=1.0;
2468  }
2469  contributions=AcquireContributionThreadSet((size_t) (2.0*support+3.0));
2470  if (contributions == (ContributionInfo **) NULL)
2471  {
2472  (void) ThrowMagickException(exception,GetMagickModule(),
2473  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
2474  return(MagickFalse);
2475  }
2476  status=MagickTrue;
2477  scale=PerceptibleReciprocal(scale);
2478  image_view=AcquireVirtualCacheView(image,exception);
2479  resize_view=AcquireAuthenticCacheView(resize_image,exception);
2480 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2481  #pragma omp parallel for schedule(static) shared(status) \
2482  magick_number_threads(image,resize_image,resize_image->columns,1)
2483 #endif
2484  for (x=0; x < (ssize_t) resize_image->columns; x++)
2485  {
2486  const int
2487  id = GetOpenMPThreadId();
2488 
2489  double
2490  bisect,
2491  density;
2492 
2493  register const Quantum
2494  *magick_restrict p;
2495 
2496  register ContributionInfo
2497  *magick_restrict contribution;
2498 
2499  register Quantum
2500  *magick_restrict q;
2501 
2502  register ssize_t
2503  y;
2504 
2505  ssize_t
2506  n,
2507  start,
2508  stop;
2509 
2510  if (status == MagickFalse)
2511  continue;
2512  bisect=(double) (x+0.5)/x_factor+MagickEpsilon;
2513  start=(ssize_t) MagickMax(bisect-support+0.5,0.0);
2514  stop=(ssize_t) MagickMin(bisect+support+0.5,(double) image->columns);
2515  density=0.0;
2516  contribution=contributions[id];
2517  for (n=0; n < (stop-start); n++)
2518  {
2519  contribution[n].pixel=start+n;
2520  contribution[n].weight=GetResizeFilterWeight(resize_filter,scale*
2521  ((double) (start+n)-bisect+0.5));
2522  density+=contribution[n].weight;
2523  }
2524  if (n == 0)
2525  continue;
2526  if ((density != 0.0) && (density != 1.0))
2527  {
2528  register ssize_t
2529  i;
2530 
2531  /*
2532  Normalize.
2533  */
2534  density=PerceptibleReciprocal(density);
2535  for (i=0; i < n; i++)
2536  contribution[i].weight*=density;
2537  }
2538  p=GetCacheViewVirtualPixels(image_view,contribution[0].pixel,0,(size_t)
2539  (contribution[n-1].pixel-contribution[0].pixel+1),image->rows,exception);
2540  q=QueueCacheViewAuthenticPixels(resize_view,x,0,1,resize_image->rows,
2541  exception);
2542  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
2543  {
2544  status=MagickFalse;
2545  continue;
2546  }
2547  for (y=0; y < (ssize_t) resize_image->rows; y++)
2548  {
2549  register ssize_t
2550  i;
2551 
2552  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
2553  {
2554  double
2555  alpha,
2556  gamma,
2557  pixel;
2558 
2559  PixelChannel
2560  channel;
2561 
2562  PixelTrait
2563  resize_traits,
2564  traits;
2565 
2566  register ssize_t
2567  j;
2568 
2569  ssize_t
2570  k;
2571 
2572  channel=GetPixelChannelChannel(image,i);
2573  traits=GetPixelChannelTraits(image,channel);
2574  resize_traits=GetPixelChannelTraits(resize_image,channel);
2575  if ((traits == UndefinedPixelTrait) ||
2576  (resize_traits == UndefinedPixelTrait))
2577  continue;
2578  if (((resize_traits & CopyPixelTrait) != 0) ||
2579  (GetPixelWriteMask(resize_image,q) <= (QuantumRange/2)))
2580  {
2581  j=(ssize_t) (MagickMin(MagickMax(bisect,(double) start),(double)
2582  stop-1.0)+0.5);
2583  k=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
2584  (contribution[j-start].pixel-contribution[0].pixel);
2585  SetPixelChannel(resize_image,channel,p[k*GetPixelChannels(image)+i],
2586  q);
2587  continue;
2588  }
2589  pixel=0.0;
2590  if ((resize_traits & BlendPixelTrait) == 0)
2591  {
2592  /*
2593  No alpha blending.
2594  */
2595  for (j=0; j < n; j++)
2596  {
2597  k=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
2598  (contribution[j].pixel-contribution[0].pixel);
2599  alpha=contribution[j].weight;
2600  pixel+=alpha*p[k*GetPixelChannels(image)+i];
2601  }
2602  SetPixelChannel(resize_image,channel,ClampToQuantum(pixel),q);
2603  continue;
2604  }
2605  /*
2606  Alpha blending.
2607  */
2608  gamma=0.0;
2609  for (j=0; j < n; j++)
2610  {
2611  k=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
2612  (contribution[j].pixel-contribution[0].pixel);
2613  alpha=contribution[j].weight*QuantumScale*
2614  GetPixelAlpha(image,p+k*GetPixelChannels(image));
2615  pixel+=alpha*p[k*GetPixelChannels(image)+i];
2616  gamma+=alpha;
2617  }
2618  gamma=PerceptibleReciprocal(gamma);
2619  SetPixelChannel(resize_image,channel,ClampToQuantum(gamma*pixel),q);
2620  }
2621  q+=GetPixelChannels(resize_image);
2622  }
2623  if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse)
2624  status=MagickFalse;
2625  if (image->progress_monitor != (MagickProgressMonitor) NULL)
2626  {
2628  proceed;
2629 
2630 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2631  #pragma omp critical (MagickCore_HorizontalFilter)
2632 #endif
2633  proceed=SetImageProgress(image,ResizeImageTag,(*offset)++,span);
2634  if (proceed == MagickFalse)
2635  status=MagickFalse;
2636  }
2637  }
2638  resize_view=DestroyCacheView(resize_view);
2639  image_view=DestroyCacheView(image_view);
2640  contributions=DestroyContributionThreadSet(contributions);
2641  return(status);
2642 }
2643 
2644 static MagickBooleanType VerticalFilter(const ResizeFilter *resize_filter,
2645  const Image *image,Image *resize_image,const double y_factor,
2646  const MagickSizeType span,MagickOffsetType *offset,ExceptionInfo *exception)
2647 {
2648  CacheView
2649  *image_view,
2650  *resize_view;
2651 
2652  ClassType
2653  storage_class;
2654 
2656  **magick_restrict contributions;
2657 
2658  double
2659  scale,
2660  support;
2661 
2663  status;
2664 
2665  ssize_t
2666  y;
2667 
2668  /*
2669  Apply filter to resize vertically from image to resize image.
2670  */
2671  scale=MagickMax(1.0/y_factor+MagickEpsilon,1.0);
2672  support=scale*GetResizeFilterSupport(resize_filter);
2673  storage_class=support > 0.5 ? DirectClass : image->storage_class;
2674  if (SetImageStorageClass(resize_image,storage_class,exception) == MagickFalse)
2675  return(MagickFalse);
2676  if (support < 0.5)
2677  {
2678  /*
2679  Support too small even for nearest neighbour: Reduce to point sampling.
2680  */
2681  support=(double) 0.5;
2682  scale=1.0;
2683  }
2684  contributions=AcquireContributionThreadSet((size_t) (2.0*support+3.0));
2685  if (contributions == (ContributionInfo **) NULL)
2686  {
2687  (void) ThrowMagickException(exception,GetMagickModule(),
2688  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
2689  return(MagickFalse);
2690  }
2691  status=MagickTrue;
2692  scale=PerceptibleReciprocal(scale);
2693  image_view=AcquireVirtualCacheView(image,exception);
2694  resize_view=AcquireAuthenticCacheView(resize_image,exception);
2695 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2696  #pragma omp parallel for schedule(static) shared(status) \
2697  magick_number_threads(image,resize_image,resize_image->rows,1)
2698 #endif
2699  for (y=0; y < (ssize_t) resize_image->rows; y++)
2700  {
2701  const int
2702  id = GetOpenMPThreadId();
2703 
2704  double
2705  bisect,
2706  density;
2707 
2708  register const Quantum
2709  *magick_restrict p;
2710 
2711  register ContributionInfo
2712  *magick_restrict contribution;
2713 
2714  register Quantum
2715  *magick_restrict q;
2716 
2717  register ssize_t
2718  x;
2719 
2720  ssize_t
2721  n,
2722  start,
2723  stop;
2724 
2725  if (status == MagickFalse)
2726  continue;
2727  bisect=(double) (y+0.5)/y_factor+MagickEpsilon;
2728  start=(ssize_t) MagickMax(bisect-support+0.5,0.0);
2729  stop=(ssize_t) MagickMin(bisect+support+0.5,(double) image->rows);
2730  density=0.0;
2731  contribution=contributions[id];
2732  for (n=0; n < (stop-start); n++)
2733  {
2734  contribution[n].pixel=start+n;
2735  contribution[n].weight=GetResizeFilterWeight(resize_filter,scale*
2736  ((double) (start+n)-bisect+0.5));
2737  density+=contribution[n].weight;
2738  }
2739  if (n == 0)
2740  continue;
2741  if ((density != 0.0) && (density != 1.0))
2742  {
2743  register ssize_t
2744  i;
2745 
2746  /*
2747  Normalize.
2748  */
2749  density=PerceptibleReciprocal(density);
2750  for (i=0; i < n; i++)
2751  contribution[i].weight*=density;
2752  }
2753  p=GetCacheViewVirtualPixels(image_view,0,contribution[0].pixel,
2754  image->columns,(size_t) (contribution[n-1].pixel-contribution[0].pixel+1),
2755  exception);
2756  q=QueueCacheViewAuthenticPixels(resize_view,0,y,resize_image->columns,1,
2757  exception);
2758  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
2759  {
2760  status=MagickFalse;
2761  continue;
2762  }
2763  for (x=0; x < (ssize_t) resize_image->columns; x++)
2764  {
2765  register ssize_t
2766  i;
2767 
2768  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
2769  {
2770  double
2771  alpha,
2772  gamma,
2773  pixel;
2774 
2775  PixelChannel
2776  channel;
2777 
2778  PixelTrait
2779  resize_traits,
2780  traits;
2781 
2782  register ssize_t
2783  j;
2784 
2785  ssize_t
2786  k;
2787 
2788  channel=GetPixelChannelChannel(image,i);
2789  traits=GetPixelChannelTraits(image,channel);
2790  resize_traits=GetPixelChannelTraits(resize_image,channel);
2791  if ((traits == UndefinedPixelTrait) ||
2792  (resize_traits == UndefinedPixelTrait))
2793  continue;
2794  if (((resize_traits & CopyPixelTrait) != 0) ||
2795  (GetPixelWriteMask(resize_image,q) <= (QuantumRange/2)))
2796  {
2797  j=(ssize_t) (MagickMin(MagickMax(bisect,(double) start),(double)
2798  stop-1.0)+0.5);
2799  k=(ssize_t) ((contribution[j-start].pixel-contribution[0].pixel)*
2800  image->columns+x);
2801  SetPixelChannel(resize_image,channel,p[k*GetPixelChannels(image)+i],
2802  q);
2803  continue;
2804  }
2805  pixel=0.0;
2806  if ((resize_traits & BlendPixelTrait) == 0)
2807  {
2808  /*
2809  No alpha blending.
2810  */
2811  for (j=0; j < n; j++)
2812  {
2813  k=(ssize_t) ((contribution[j].pixel-contribution[0].pixel)*
2814  image->columns+x);
2815  alpha=contribution[j].weight;
2816  pixel+=alpha*p[k*GetPixelChannels(image)+i];
2817  }
2818  SetPixelChannel(resize_image,channel,ClampToQuantum(pixel),q);
2819  continue;
2820  }
2821  gamma=0.0;
2822  for (j=0; j < n; j++)
2823  {
2824  k=(ssize_t) ((contribution[j].pixel-contribution[0].pixel)*
2825  image->columns+x);
2826  alpha=contribution[j].weight*QuantumScale*GetPixelAlpha(image,p+k*
2827  GetPixelChannels(image));
2828  pixel+=alpha*p[k*GetPixelChannels(image)+i];
2829  gamma+=alpha;
2830  }
2831  gamma=PerceptibleReciprocal(gamma);
2832  SetPixelChannel(resize_image,channel,ClampToQuantum(gamma*pixel),q);
2833  }
2834  q+=GetPixelChannels(resize_image);
2835  }
2836  if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse)
2837  status=MagickFalse;
2838  if (image->progress_monitor != (MagickProgressMonitor) NULL)
2839  {
2841  proceed;
2842 
2843 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2844  #pragma omp critical (MagickCore_VerticalFilter)
2845 #endif
2846  proceed=SetImageProgress(image,ResizeImageTag,(*offset)++,span);
2847  if (proceed == MagickFalse)
2848  status=MagickFalse;
2849  }
2850  }
2851  resize_view=DestroyCacheView(resize_view);
2852  image_view=DestroyCacheView(image_view);
2853  contributions=DestroyContributionThreadSet(contributions);
2854  return(status);
2855 }
2856 
2857 MagickExport Image *ResizeImage(const Image *image,const size_t columns,
2858  const size_t rows,const FilterType filter,ExceptionInfo *exception)
2859 {
2860  double
2861  x_factor,
2862  y_factor;
2863 
2864  FilterType
2865  filter_type;
2866 
2867  Image
2868  *filter_image,
2869  *resize_image;
2870 
2872  offset;
2873 
2875  span;
2876 
2878  status;
2879 
2880  ResizeFilter
2881  *resize_filter;
2882 
2883  /*
2884  Acquire resize image.
2885  */
2886  assert(image != (Image *) NULL);
2887  assert(image->signature == MagickCoreSignature);
2888  if (image->debug != MagickFalse)
2889  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2890  assert(exception != (ExceptionInfo *) NULL);
2891  assert(exception->signature == MagickCoreSignature);
2892  if ((columns == 0) || (rows == 0))
2893  ThrowImageException(ImageError,"NegativeOrZeroImageSize");
2894  if ((columns == image->columns) && (rows == image->rows) &&
2895  (filter == UndefinedFilter))
2896  return(CloneImage(image,0,0,MagickTrue,exception));
2897  /*
2898  Acquire resize filter.
2899  */
2900  x_factor=(double) columns/(double) image->columns;
2901  y_factor=(double) rows/(double) image->rows;
2902  filter_type=LanczosFilter;
2903  if (filter != UndefinedFilter)
2904  filter_type=filter;
2905  else
2906  if ((x_factor == 1.0) && (y_factor == 1.0))
2907  filter_type=PointFilter;
2908  else
2909  if ((image->storage_class == PseudoClass) ||
2910  (image->alpha_trait != UndefinedPixelTrait) ||
2911  ((x_factor*y_factor) > 1.0))
2912  filter_type=MitchellFilter;
2913  resize_filter=AcquireResizeFilter(image,filter_type,MagickFalse,exception);
2914 #if defined(MAGICKCORE_OPENCL_SUPPORT)
2915  resize_image=AccelerateResizeImage(image,columns,rows,resize_filter,
2916  exception);
2917  if (resize_image != (Image *) NULL)
2918  {
2919  resize_filter=DestroyResizeFilter(resize_filter);
2920  return(resize_image);
2921  }
2922 #endif
2923  resize_image=CloneImage(image,columns,rows,MagickTrue,exception);
2924  if (resize_image == (Image *) NULL)
2925  {
2926  resize_filter=DestroyResizeFilter(resize_filter);
2927  return(resize_image);
2928  }
2929  if (x_factor > y_factor)
2930  filter_image=CloneImage(image,columns,image->rows,MagickTrue,exception);
2931  else
2932  filter_image=CloneImage(image,image->columns,rows,MagickTrue,exception);
2933  if (filter_image == (Image *) NULL)
2934  {
2935  resize_filter=DestroyResizeFilter(resize_filter);
2936  return(DestroyImage(resize_image));
2937  }
2938  /*
2939  Resize image.
2940  */
2941  offset=0;
2942  if (x_factor > y_factor)
2943  {
2944  span=(MagickSizeType) (filter_image->columns+rows);
2945  status=HorizontalFilter(resize_filter,image,filter_image,x_factor,span,
2946  &offset,exception);
2947  status&=VerticalFilter(resize_filter,filter_image,resize_image,y_factor,
2948  span,&offset,exception);
2949  }
2950  else
2951  {
2952  span=(MagickSizeType) (filter_image->rows+columns);
2953  status=VerticalFilter(resize_filter,image,filter_image,y_factor,span,
2954  &offset,exception);
2955  status&=HorizontalFilter(resize_filter,filter_image,resize_image,x_factor,
2956  span,&offset,exception);
2957  }
2958  /*
2959  Free resources.
2960  */
2961  filter_image=DestroyImage(filter_image);
2962  resize_filter=DestroyResizeFilter(resize_filter);
2963  if (status == MagickFalse)
2964  {
2965  resize_image=DestroyImage(resize_image);
2966  return((Image *) NULL);
2967  }
2968  resize_image->type=image->type;
2969  return(resize_image);
2970 }
2971 
2972 /*
2973 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2974 % %
2975 % %
2976 % %
2977 % S a m p l e I m a g e %
2978 % %
2979 % %
2980 % %
2981 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2982 %
2983 % SampleImage() scales an image to the desired dimensions with pixel
2984 % sampling. Unlike other scaling methods, this method does not introduce
2985 % any additional color into the scaled image.
2986 %
2987 % The format of the SampleImage method is:
2988 %
2989 % Image *SampleImage(const Image *image,const size_t columns,
2990 % const size_t rows,ExceptionInfo *exception)
2991 %
2992 % A description of each parameter follows:
2993 %
2994 % o image: the image.
2995 %
2996 % o columns: the number of columns in the sampled image.
2997 %
2998 % o rows: the number of rows in the sampled image.
2999 %
3000 % o exception: return any errors or warnings in this structure.
3001 %
3002 */
3003 MagickExport Image *SampleImage(const Image *image,const size_t columns,
3004  const size_t rows,ExceptionInfo *exception)
3005 {
3006 #define SampleImageTag "Sample/Image"
3007 
3008  CacheView
3009  *image_view,
3010  *sample_view;
3011 
3012  Image
3013  *sample_image;
3014 
3016  status;
3017 
3019  progress;
3020 
3021  register ssize_t
3022  x1;
3023 
3024  ssize_t
3025  *x_offset,
3026  y;
3027 
3028  PointInfo
3029  sample_offset;
3030 
3031  /*
3032  Initialize sampled image attributes.
3033  */
3034  assert(image != (const Image *) NULL);
3035  assert(image->signature == MagickCoreSignature);
3036  if (image->debug != MagickFalse)
3037  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
3038  assert(exception != (ExceptionInfo *) NULL);
3039  assert(exception->signature == MagickCoreSignature);
3040  if ((columns == 0) || (rows == 0))
3041  ThrowImageException(ImageError,"NegativeOrZeroImageSize");
3042  if ((columns == image->columns) && (rows == image->rows))
3043  return(CloneImage(image,0,0,MagickTrue,exception));
3044  sample_image=CloneImage(image,columns,rows,MagickTrue,exception);
3045  if (sample_image == (Image *) NULL)
3046  return((Image *) NULL);
3047  /*
3048  Set the sampling offset, default is in the mid-point of sample regions.
3049  */
3050  sample_offset.x=sample_offset.y=0.5-MagickEpsilon;
3051  {
3052  const char
3053  *value;
3054 
3055  value=GetImageArtifact(image,"sample:offset");
3056  if (value != (char *) NULL)
3057  {
3058  GeometryInfo
3059  geometry_info;
3060 
3062  flags;
3063 
3064  (void) ParseGeometry(value,&geometry_info);
3065  flags=ParseGeometry(value,&geometry_info);
3066  sample_offset.x=sample_offset.y=geometry_info.rho/100.0-MagickEpsilon;
3067  if ((flags & SigmaValue) != 0)
3068  sample_offset.y=geometry_info.sigma/100.0-MagickEpsilon;
3069  }
3070  }
3071  /*
3072  Allocate scan line buffer and column offset buffers.
3073  */
3074  x_offset=(ssize_t *) AcquireQuantumMemory((size_t) sample_image->columns,
3075  sizeof(*x_offset));
3076  if (x_offset == (ssize_t *) NULL)
3077  {
3078  sample_image=DestroyImage(sample_image);
3079  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
3080  }
3081  for (x1=0; x1 < (ssize_t) sample_image->columns; x1++)
3082  x_offset[x1]=(ssize_t) ((((double) x1+sample_offset.x)*image->columns)/
3083  sample_image->columns);
3084  /*
3085  Sample each row.
3086  */
3087  status=MagickTrue;
3088  progress=0;
3089  image_view=AcquireVirtualCacheView(image,exception);
3090  sample_view=AcquireAuthenticCacheView(sample_image,exception);
3091 #if defined(MAGICKCORE_OPENMP_SUPPORT)
3092  #pragma omp parallel for schedule(static) shared(status) \
3093  magick_number_threads(image,sample_image,sample_image->rows,1)
3094 #endif
3095  for (y=0; y < (ssize_t) sample_image->rows; y++)
3096  {
3097  register const Quantum
3098  *magick_restrict p;
3099 
3100  register Quantum
3101  *magick_restrict q;
3102 
3103  register ssize_t
3104  x;
3105 
3106  ssize_t
3107  y_offset;
3108 
3109  if (status == MagickFalse)
3110  continue;
3111  y_offset=(ssize_t) ((((double) y+sample_offset.y)*image->rows)/
3112  sample_image->rows);
3113  p=GetCacheViewVirtualPixels(image_view,0,y_offset,image->columns,1,
3114  exception);
3115  q=QueueCacheViewAuthenticPixels(sample_view,0,y,sample_image->columns,1,
3116  exception);
3117  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
3118  {
3119  status=MagickFalse;
3120  continue;
3121  }
3122  /*
3123  Sample each column.
3124  */
3125  for (x=0; x < (ssize_t) sample_image->columns; x++)
3126  {
3127  register ssize_t
3128  i;
3129 
3130  if (GetPixelWriteMask(sample_image,q) <= (QuantumRange/2))
3131  {
3132  q+=GetPixelChannels(sample_image);
3133  continue;
3134  }
3135  for (i=0; i < (ssize_t) GetPixelChannels(sample_image); i++)
3136  {
3137  PixelChannel
3138  channel;
3139 
3140  PixelTrait
3141  image_traits,
3142  traits;
3143 
3144  channel=GetPixelChannelChannel(sample_image,i);
3145  traits=GetPixelChannelTraits(sample_image,channel);
3146  image_traits=GetPixelChannelTraits(image,channel);
3147  if ((traits == UndefinedPixelTrait) ||
3148  (image_traits == UndefinedPixelTrait))
3149  continue;
3150  SetPixelChannel(sample_image,channel,p[x_offset[x]*GetPixelChannels(
3151  image)+i],q);
3152  }
3153  q+=GetPixelChannels(sample_image);
3154  }
3155  if (SyncCacheViewAuthenticPixels(sample_view,exception) == MagickFalse)
3156  status=MagickFalse;
3157  if (image->progress_monitor != (MagickProgressMonitor) NULL)
3158  {
3160  proceed;
3161 
3162 #if defined(MAGICKCORE_OPENMP_SUPPORT)
3163  #pragma omp critical (MagickCore_SampleImage)
3164 #endif
3165  proceed=SetImageProgress(image,SampleImageTag,progress++,image->rows);
3166  if (proceed == MagickFalse)
3167  status=MagickFalse;
3168  }
3169  }
3170  image_view=DestroyCacheView(image_view);
3171  sample_view=DestroyCacheView(sample_view);
3172  x_offset=(ssize_t *) RelinquishMagickMemory(x_offset);
3173  sample_image->type=image->type;
3174  if (status == MagickFalse)
3175  sample_image=DestroyImage(sample_image);
3176  return(sample_image);
3177 }
3178 
3179 /*
3180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3181 % %
3182 % %
3183 % %
3184 % S c a l e I m a g e %
3185 % %
3186 % %
3187 % %
3188 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3189 %
3190 % ScaleImage() changes the size of an image to the given dimensions.
3191 %
3192 % The format of the ScaleImage method is:
3193 %
3194 % Image *ScaleImage(const Image *image,const size_t columns,
3195 % const size_t rows,ExceptionInfo *exception)
3196 %
3197 % A description of each parameter follows:
3198 %
3199 % o image: the image.
3200 %
3201 % o columns: the number of columns in the scaled image.
3202 %
3203 % o rows: the number of rows in the scaled image.
3204 %
3205 % o exception: return any errors or warnings in this structure.
3206 %
3207 */
3208 MagickExport Image *ScaleImage(const Image *image,const size_t columns,
3209  const size_t rows,ExceptionInfo *exception)
3210 {
3211 #define ScaleImageTag "Scale/Image"
3212 
3213  CacheView
3214  *image_view,
3215  *scale_view;
3216 
3217  double
3218  alpha,
3219  pixel[CompositePixelChannel],
3220  *scale_scanline,
3221  *scanline,
3222  *x_vector,
3223  *y_vector;
3224 
3225  Image
3226  *scale_image;
3227 
3229  next_column,
3230  next_row,
3231  proceed,
3232  status;
3233 
3234  PixelTrait
3235  scale_traits;
3236 
3237  PointInfo
3238  scale,
3239  span;
3240 
3241  register ssize_t
3242  i;
3243 
3244  ssize_t
3245  n,
3246  number_rows,
3247  y;
3248 
3249  /*
3250  Initialize scaled image attributes.
3251  */
3252  assert(image != (const Image *) NULL);
3253  assert(image->signature == MagickCoreSignature);
3254  if (image->debug != MagickFalse)
3255  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
3256  assert(exception != (ExceptionInfo *) NULL);
3257  assert(exception->signature == MagickCoreSignature);
3258  if ((columns == 0) || (rows == 0))
3259  ThrowImageException(ImageError,"NegativeOrZeroImageSize");
3260  if ((columns == image->columns) && (rows == image->rows))
3261  return(CloneImage(image,0,0,MagickTrue,exception));
3262  scale_image=CloneImage(image,columns,rows,MagickTrue,exception);
3263  if (scale_image == (Image *) NULL)
3264  return((Image *) NULL);
3265  if (SetImageStorageClass(scale_image,DirectClass,exception) == MagickFalse)
3266  {
3267  scale_image=DestroyImage(scale_image);
3268  return((Image *) NULL);
3269  }
3270  /*
3271  Allocate memory.
3272  */
3273  x_vector=(double *) AcquireQuantumMemory((size_t) image->columns,
3274  MaxPixelChannels*sizeof(*x_vector));
3275  scanline=x_vector;
3276  if (image->rows != scale_image->rows)
3277  scanline=(double *) AcquireQuantumMemory((size_t) image->columns,
3278  MaxPixelChannels*sizeof(*scanline));
3279  scale_scanline=(double *) AcquireQuantumMemory((size_t) scale_image->columns,
3280  MaxPixelChannels*sizeof(*scale_scanline));
3281  y_vector=(double *) AcquireQuantumMemory((size_t) image->columns,
3282  MaxPixelChannels*sizeof(*y_vector));
3283  if ((scanline == (double *) NULL) || (scale_scanline == (double *) NULL) ||
3284  (x_vector == (double *) NULL) || (y_vector == (double *) NULL))
3285  {
3286  if ((image->rows != scale_image->rows) && (scanline != (double *) NULL))
3287  scanline=(double *) RelinquishMagickMemory(scanline);
3288  if (scale_scanline != (double *) NULL)
3289  scale_scanline=(double *) RelinquishMagickMemory(scale_scanline);
3290  if (x_vector != (double *) NULL)
3291  x_vector=(double *) RelinquishMagickMemory(x_vector);
3292  if (y_vector != (double *) NULL)
3293  y_vector=(double *) RelinquishMagickMemory(y_vector);
3294  scale_image=DestroyImage(scale_image);
3295  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
3296  }
3297  /*
3298  Scale image.
3299  */
3300  number_rows=0;
3301  next_row=MagickTrue;
3302  span.y=1.0;
3303  scale.y=(double) scale_image->rows/(double) image->rows;
3304  (void) memset(y_vector,0,(size_t) MaxPixelChannels*image->columns*
3305  sizeof(*y_vector));
3306  n=0;
3307  status=MagickTrue;
3308  image_view=AcquireVirtualCacheView(image,exception);
3309  scale_view=AcquireAuthenticCacheView(scale_image,exception);
3310  for (y=0; y < (ssize_t) scale_image->rows; y++)
3311  {
3312  register const Quantum
3313  *magick_restrict p;
3314 
3315  register Quantum
3316  *magick_restrict q;
3317 
3318  register ssize_t
3319  x;
3320 
3321  if (status == MagickFalse)
3322  break;
3323  q=QueueCacheViewAuthenticPixels(scale_view,0,y,scale_image->columns,1,
3324  exception);
3325  if (q == (Quantum *) NULL)
3326  {
3327  status=MagickFalse;
3328  break;
3329  }
3330  alpha=1.0;
3331  if (scale_image->rows == image->rows)
3332  {
3333  /*
3334  Read a new scanline.
3335  */
3336  p=GetCacheViewVirtualPixels(image_view,0,n++,image->columns,1,
3337  exception);
3338  if (p == (const Quantum *) NULL)
3339  {
3340  status=MagickFalse;
3341  break;
3342  }
3343  for (x=0; x < (ssize_t) image->columns; x++)
3344  {
3345  if (GetPixelWriteMask(image,p) <= (QuantumRange/2))
3346  {
3347  p+=GetPixelChannels(image);
3348  continue;
3349  }
3350  if (image->alpha_trait != UndefinedPixelTrait)
3351  alpha=QuantumScale*GetPixelAlpha(image,p);
3352  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3353  {
3354  PixelChannel channel = GetPixelChannelChannel(image,i);
3355  PixelTrait traits = GetPixelChannelTraits(image,channel);
3356  if ((traits & BlendPixelTrait) == 0)
3357  {
3358  x_vector[x*GetPixelChannels(image)+i]=(double) p[i];
3359  continue;
3360  }
3361  x_vector[x*GetPixelChannels(image)+i]=alpha*p[i];
3362  }
3363  p+=GetPixelChannels(image);
3364  }
3365  }
3366  else
3367  {
3368  /*
3369  Scale Y direction.
3370  */
3371  while (scale.y < span.y)
3372  {
3373  if ((next_row != MagickFalse) &&
3374  (number_rows < (ssize_t) image->rows))
3375  {
3376  /*
3377  Read a new scanline.
3378  */
3379  p=GetCacheViewVirtualPixels(image_view,0,n++,image->columns,1,
3380  exception);
3381  if (p == (const Quantum *) NULL)
3382  {
3383  status=MagickFalse;
3384  break;
3385  }
3386  for (x=0; x < (ssize_t) image->columns; x++)
3387  {
3388  if (GetPixelWriteMask(image,p) <= (QuantumRange/2))
3389  {
3390  p+=GetPixelChannels(image);
3391  continue;
3392  }
3393  if (image->alpha_trait != UndefinedPixelTrait)
3394  alpha=QuantumScale*GetPixelAlpha(image,p);
3395  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3396  {
3397  PixelChannel channel = GetPixelChannelChannel(image,i);
3398  PixelTrait traits = GetPixelChannelTraits(image,channel);
3399  if ((traits & BlendPixelTrait) == 0)
3400  {
3401  x_vector[x*GetPixelChannels(image)+i]=(double) p[i];
3402  continue;
3403  }
3404  x_vector[x*GetPixelChannels(image)+i]=alpha*p[i];
3405  }
3406  p+=GetPixelChannels(image);
3407  }
3408  number_rows++;
3409  }
3410  for (x=0; x < (ssize_t) image->columns; x++)
3411  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3412  y_vector[x*GetPixelChannels(image)+i]+=scale.y*
3413  x_vector[x*GetPixelChannels(image)+i];
3414  span.y-=scale.y;
3415  scale.y=(double) scale_image->rows/(double) image->rows;
3416  next_row=MagickTrue;
3417  }
3418  if ((next_row != MagickFalse) && (number_rows < (ssize_t) image->rows))
3419  {
3420  /*
3421  Read a new scanline.
3422  */
3423  p=GetCacheViewVirtualPixels(image_view,0,n++,image->columns,1,
3424  exception);
3425  if (p == (const Quantum *) NULL)
3426  {
3427  status=MagickFalse;
3428  break;
3429  }
3430  for (x=0; x < (ssize_t) image->columns; x++)
3431  {
3432  if (GetPixelWriteMask(image,p) <= (QuantumRange/2))
3433  {
3434  p+=GetPixelChannels(image);
3435  continue;
3436  }
3437  if (image->alpha_trait != UndefinedPixelTrait)
3438  alpha=QuantumScale*GetPixelAlpha(image,p);
3439  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3440  {
3441  PixelChannel channel = GetPixelChannelChannel(image,i);
3442  PixelTrait traits = GetPixelChannelTraits(image,channel);
3443  if ((traits & BlendPixelTrait) == 0)
3444  {
3445  x_vector[x*GetPixelChannels(image)+i]=(double) p[i];
3446  continue;
3447  }
3448  x_vector[x*GetPixelChannels(image)+i]=alpha*p[i];
3449  }
3450  p+=GetPixelChannels(image);
3451  }
3452  number_rows++;
3453  next_row=MagickFalse;
3454  }
3455  for (x=0; x < (ssize_t) image->columns; x++)
3456  {
3457  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3458  {
3459  pixel[i]=y_vector[x*GetPixelChannels(image)+i]+span.y*
3460  x_vector[x*GetPixelChannels(image)+i];
3461  scanline[x*GetPixelChannels(image)+i]=pixel[i];
3462  y_vector[x*GetPixelChannels(image)+i]=0.0;
3463  }
3464  }
3465  scale.y-=span.y;
3466  if (scale.y <= 0)
3467  {
3468  scale.y=(double) scale_image->rows/(double) image->rows;
3469  next_row=MagickTrue;
3470  }
3471  span.y=1.0;
3472  }
3473  if (scale_image->columns == image->columns)
3474  {
3475  /*
3476  Transfer scanline to scaled image.
3477  */
3478  for (x=0; x < (ssize_t) scale_image->columns; x++)
3479  {
3480  if (GetPixelWriteMask(scale_image,q) <= (QuantumRange/2))
3481  {
3482  q+=GetPixelChannels(scale_image);
3483  continue;
3484  }
3485  if (image->alpha_trait != UndefinedPixelTrait)
3486  {
3487  alpha=QuantumScale*scanline[x*GetPixelChannels(image)+
3489  alpha=PerceptibleReciprocal(alpha);
3490  }
3491  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3492  {
3493  PixelChannel channel = GetPixelChannelChannel(image,i);
3494  PixelTrait traits = GetPixelChannelTraits(image,channel);
3495  scale_traits=GetPixelChannelTraits(scale_image,channel);
3496  if ((traits == UndefinedPixelTrait) ||
3497  (scale_traits == UndefinedPixelTrait))
3498  continue;
3499  if ((traits & BlendPixelTrait) == 0)
3500  {
3501  SetPixelChannel(scale_image,channel,ClampToQuantum(
3502  scanline[x*GetPixelChannels(image)+i]),q);
3503  continue;
3504  }
3505  SetPixelChannel(scale_image,channel,ClampToQuantum(alpha*scanline[
3506  x*GetPixelChannels(image)+i]),q);
3507  }
3508  q+=GetPixelChannels(scale_image);
3509  }
3510  }
3511  else
3512  {
3513  ssize_t
3514  t;
3515 
3516  /*
3517  Scale X direction.
3518  */
3519  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3520  pixel[i]=0.0;
3521  next_column=MagickFalse;
3522  span.x=1.0;
3523  t=0;
3524  for (x=0; x < (ssize_t) image->columns; x++)
3525  {
3526  scale.x=(double) scale_image->columns/(double) image->columns;
3527  while (scale.x >= span.x)
3528  {
3529  if (next_column != MagickFalse)
3530  {
3531  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3532  pixel[i]=0.0;
3533  t++;
3534  }
3535  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3536  {
3537  PixelChannel channel = GetPixelChannelChannel(image,i);
3538  PixelTrait traits = GetPixelChannelTraits(image,channel);
3539  if (traits == UndefinedPixelTrait)
3540  continue;
3541  pixel[i]+=span.x*scanline[x*GetPixelChannels(image)+i];
3542  scale_scanline[t*GetPixelChannels(image)+i]=pixel[i];
3543  }
3544  scale.x-=span.x;
3545  span.x=1.0;
3546  next_column=MagickTrue;
3547  }
3548  if (scale.x > 0)
3549  {
3550  if (next_column != MagickFalse)
3551  {
3552  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3553  pixel[i]=0.0;
3554  next_column=MagickFalse;
3555  t++;
3556  }
3557  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3558  pixel[i]+=scale.x*scanline[x*GetPixelChannels(image)+i];
3559  span.x-=scale.x;
3560  }
3561  }
3562  if (span.x > 0)
3563  {
3564  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3565  pixel[i]+=span.x*scanline[(x-1)*GetPixelChannels(image)+i];
3566  }
3567  if ((next_column == MagickFalse) &&
3568  (t < (ssize_t) scale_image->columns))
3569  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3570  scale_scanline[t*GetPixelChannels(image)+i]=pixel[i];
3571  /*
3572  Transfer scanline to scaled image.
3573  */
3574  for (x=0; x < (ssize_t) scale_image->columns; x++)
3575  {
3576  if (GetPixelWriteMask(scale_image,q) <= (QuantumRange/2))
3577  {
3578  q+=GetPixelChannels(scale_image);
3579  continue;
3580  }
3581  if (image->alpha_trait != UndefinedPixelTrait)
3582  {
3583  alpha=QuantumScale*scale_scanline[x*GetPixelChannels(image)+
3585  alpha=PerceptibleReciprocal(alpha);
3586  }
3587  for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
3588  {
3589  PixelChannel channel = GetPixelChannelChannel(image,i);
3590  PixelTrait traits = GetPixelChannelTraits(image,channel);
3591  scale_traits=GetPixelChannelTraits(scale_image,channel);
3592  if ((traits == UndefinedPixelTrait) ||
3593  (scale_traits == UndefinedPixelTrait))
3594  continue;
3595  if ((traits & BlendPixelTrait) == 0)
3596  {
3597  SetPixelChannel(scale_image,channel,ClampToQuantum(
3598  scale_scanline[x*GetPixelChannels(image)+i]),q);
3599  continue;
3600  }
3601  SetPixelChannel(scale_image,channel,ClampToQuantum(alpha*
3602  scale_scanline[x*GetPixelChannels(image)+i]),q);
3603  }
3604  q+=GetPixelChannels(scale_image);
3605  }
3606  }
3607  if (SyncCacheViewAuthenticPixels(scale_view,exception) == MagickFalse)
3608  {
3609  status=MagickFalse;
3610  break;
3611  }
3613  image->rows);
3614  if (proceed == MagickFalse)
3615  {
3616  status=MagickFalse;
3617  break;
3618  }
3619  }
3620  scale_view=DestroyCacheView(scale_view);
3621  image_view=DestroyCacheView(image_view);
3622  /*
3623  Free allocated memory.
3624  */
3625  y_vector=(double *) RelinquishMagickMemory(y_vector);
3626  scale_scanline=(double *) RelinquishMagickMemory(scale_scanline);
3627  if (scale_image->rows != image->rows)
3628  scanline=(double *) RelinquishMagickMemory(scanline);
3629  x_vector=(double *) RelinquishMagickMemory(x_vector);
3630  scale_image->type=image->type;
3631  if (status == MagickFalse)
3632  scale_image=DestroyImage(scale_image);
3633  return(scale_image);
3634 }
3635 
3636 /*
3637 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3638 % %
3639 % %
3640 % %
3641 % T h u m b n a i l I m a g e %
3642 % %
3643 % %
3644 % %
3645 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3646 %
3647 % ThumbnailImage() changes the size of an image to the given dimensions and
3648 % removes any associated profiles. The goal is to produce small low cost
3649 % thumbnail images suited for display on the Web.
3650 %
3651 % The format of the ThumbnailImage method is:
3652 %
3653 % Image *ThumbnailImage(const Image *image,const size_t columns,
3654 % const size_t rows,ExceptionInfo *exception)
3655 %
3656 % A description of each parameter follows:
3657 %
3658 % o image: the image.
3659 %
3660 % o columns: the number of columns in the scaled image.
3661 %
3662 % o rows: the number of rows in the scaled image.
3663 %
3664 % o exception: return any errors or warnings in this structure.
3665 %
3666 */
3667 MagickExport Image *ThumbnailImage(const Image *image,const size_t columns,
3668  const size_t rows,ExceptionInfo *exception)
3669 {
3670 #define SampleFactor 5
3671 
3672  char
3673  filename[MagickPathExtent],
3674  value[MagickPathExtent];
3675 
3676  const char
3677  *name;
3678 
3679  Image
3680  *thumbnail_image;
3681 
3682  double
3683  x_factor,
3684  y_factor;
3685 
3686  struct stat
3687  attributes;
3688 
3689  assert(image != (Image *) NULL);
3690  assert(image->signature == MagickCoreSignature);
3691  if (image->debug != MagickFalse)
3692  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
3693  assert(exception != (ExceptionInfo *) NULL);
3694  assert(exception->signature == MagickCoreSignature);
3695  x_factor=(double) columns/(double) image->columns;
3696  y_factor=(double) rows/(double) image->rows;
3697  if ((x_factor*y_factor) > 0.1)
3698  thumbnail_image=ResizeImage(image,columns,rows,image->filter,exception);
3699  else
3700  if (((SampleFactor*columns) < 128) || ((SampleFactor*rows) < 128))
3701  thumbnail_image=ResizeImage(image,columns,rows,image->filter,exception);
3702  else
3703  {
3704  Image
3705  *sample_image;
3706 
3707  sample_image=SampleImage(image,SampleFactor*columns,SampleFactor*rows,
3708  exception);
3709  if (sample_image == (Image *) NULL)
3710  return((Image *) NULL);
3711  thumbnail_image=ResizeImage(sample_image,columns,rows,image->filter,
3712  exception);
3713  sample_image=DestroyImage(sample_image);
3714  }
3715  if (thumbnail_image == (Image *) NULL)
3716  return(thumbnail_image);
3717  (void) ParseAbsoluteGeometry("0x0+0+0",&thumbnail_image->page);
3718  if (thumbnail_image->alpha_trait == UndefinedPixelTrait)
3719  (void) SetImageAlphaChannel(thumbnail_image,OpaqueAlphaChannel,exception);
3720  thumbnail_image->depth=8;
3721  thumbnail_image->interlace=NoInterlace;
3722  /*
3723  Strip all profiles except color profiles.
3724  */
3725  ResetImageProfileIterator(thumbnail_image);
3726  for (name=GetNextImageProfile(thumbnail_image); name != (const char *) NULL; )
3727  {
3728  if ((LocaleCompare(name,"icc") != 0) && (LocaleCompare(name,"icm") != 0))
3729  {
3730  (void) DeleteImageProfile(thumbnail_image,name);
3731  ResetImageProfileIterator(thumbnail_image);
3732  }
3733  name=GetNextImageProfile(thumbnail_image);
3734  }
3735  (void) DeleteImageProperty(thumbnail_image,"comment");
3736  (void) CopyMagickString(value,image->magick_filename,MagickPathExtent);
3737  if (strstr(image->magick_filename,"//") == (char *) NULL)
3738  (void) FormatLocaleString(value,MagickPathExtent,"file://%s",
3739  image->magick_filename);
3740  (void) SetImageProperty(thumbnail_image,"Thumb::URI",value,exception);
3741  GetPathComponent(image->magick_filename,TailPath,filename);
3742  (void) CopyMagickString(value,filename,MagickPathExtent);
3743  if ( GetPathAttributes(image->filename,&attributes) != MagickFalse )
3744  {
3745  (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double)
3746  attributes.st_mtime);
3747  (void) SetImageProperty(thumbnail_image,"Thumb::MTime",value,exception);
3748  }
3749  (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double)
3750  attributes.st_mtime);
3752  value);
3753  (void) SetImageProperty(thumbnail_image,"Thumb::Size",value,exception);
3754  (void) FormatLocaleString(value,MagickPathExtent,"image/%s",image->magick);
3755  LocaleLower(value);
3756  (void) SetImageProperty(thumbnail_image,"Thumb::Mimetype",value,exception);
3757  (void) SetImageProperty(thumbnail_image,"software",MagickAuthoritativeURL,
3758  exception);
3759  (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double)
3760  image->magick_columns);
3761  (void) SetImageProperty(thumbnail_image,"Thumb::Image::Width",value,
3762  exception);
3763  (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double)
3764  image->magick_rows);
3765  (void) SetImageProperty(thumbnail_image,"Thumb::Image::Height",value,
3766  exception);
3767  (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double)
3768  GetImageListLength(image));
3769  (void) SetImageProperty(thumbnail_image,"Thumb::Document::Pages",value,
3770  exception);
3771  return(thumbnail_image);
3772 }
size_t rows
Definition: image.h:172
#define magick_restrict
Definition: MagickCore.h:41
MagickExport Image * ResizeImage(const Image *image, const size_t columns, const size_t rows, const FilterType filter, ExceptionInfo *exception)
Definition: resize.c:2857
MagickDoubleType MagickRealType
Definition: magick-type.h:118
#define ScaleImageTag
MagickExport CacheView * DestroyCacheView(CacheView *cache_view)
Definition: cache-view.c:252
MagickExport ssize_t FormatMagickSize(const MagickSizeType size, const MagickBooleanType bi, const char *suffix, const size_t length, char *format)
Definition: string.c:1093
#define MagickSQ1_2
Definition: image-private.h:32
static ssize_t GetPixelChannelOffset(const Image *magick_restrict image, const PixelChannel channel)
static MagickBooleanType SetImageProgress(const Image *image, const char *tag, const MagickOffsetType offset, const MagickSizeType extent)
double(*)(*) blur
Definition: resize.c:94
MagickExport MemoryInfo * RelinquishVirtualMemory(MemoryInfo *memory_info)
Definition: memory.c:1121
InterlaceType interlace
Definition: image.h:225
MagickExport MagickBooleanType GetPathAttributes(const char *path, void *attributes)
Definition: utility.c:1165
MagickProgressMonitor progress_monitor
Definition: image.h:303
ImageType type
Definition: image.h:264
static Quantum GetPixelAlpha(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
FilterType
Definition: resample.h:32
FilterType filter
Definition: image.h:219
double(*)(*) window_support
Definition: resize.c:94
#define MagickAssumeAligned(address)
double(*)(*) coefficient[7]
Definition: resize.c:94
static double Jinc(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:346
MagickExport ssize_t ParseCommandOption(const CommandOption option, const MagickBooleanType list, const char *options)
Definition: option.c:2963
static double I0(double x)
Definition: resize.c:1341
MagickExport MagickBooleanType DeleteImageProfile(Image *image, const char *name)
Definition: profile.c:211
PixelInterpolateMethod
Definition: pixel.h:110
static double Hann(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:322
MagickExport MemoryInfo * AcquireVirtualMemory(const size_t count, const size_t quantum)
Definition: memory.c:571
size_t signature
Definition: exception.h:123
double rho
Definition: geometry.h:106
MagickExport MagickStatusType ParseAbsoluteGeometry(const char *geometry, RectangleInfo *region_info)
Definition: geometry.c:703
MagickExport MagickBooleanType DeleteImageArtifact(Image *image, const char *artifact)
Definition: artifact.c:198
#define MagickAuthoritativeURL
Definition: version.h:53
#define SampleFactor
static double Blackman(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:149
static MagickBooleanType VerticalFilter(const ResizeFilter *resize_filter, const Image *image, Image *resize_image, const double y_factor, const MagickSizeType span, MagickOffsetType *offset, ExceptionInfo *exception)
Definition: resize.c:2644
static double Q1(double x)
Definition: resize.c:1452
MagickExport const char * GetImageArtifact(const Image *image, const char *artifact)
Definition: artifact.c:273
#define ResizeImageTag
static ContributionInfo ** AcquireContributionThreadSet(const size_t count)
Definition: resize.c:2400
static double StringToDouble(const char *magick_restrict string, char **magick_restrict sentinal)
static PixelTrait GetPixelChannelTraits(const Image *magick_restrict image, const PixelChannel channel)
MagickExport Image * LiquidRescaleImage(const Image *image, const size_t magick_unused(columns), const size_t magick_unused(rows), const double magick_unused(delta_x), const double magick_unused(rigidity), ExceptionInfo *exception)
Definition: resize.c:2020
#define MagickPI
Definition: image-private.h:30
MagickExport Image * SampleImage(const Image *image, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: resize.c:3003
ssize_t pixel
Definition: resize.c:2382
MagickExport ssize_t FormatLocaleString(char *magick_restrict string, const size_t length, const char *magick_restrict format,...)
Definition: locale.c:504
ResizeWeightingFunctionType windowWeightingType
Definition: resize.c:101
static void * AcquireCriticalMemory(const size_t size)
#define MagickPI2
Definition: image-private.h:31
MagickPrivate double GetResizeFilterScale(const ResizeFilter *resize_filter)
Definition: resize.c:1582
char magick[MagickPathExtent]
Definition: image.h:319
size_t magick_rows
Definition: image.h:324
MagickPrivate double GetResizeFilterWindowSupport(const ResizeFilter *resize_filter)
Definition: resize.c:1589
MagickExport const Quantum * GetCacheViewVirtualPixels(const CacheView *cache_view, const ssize_t x, const ssize_t y, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: cache-view.c:651
static long StringToLong(const char *magick_restrict value)
double(*)(*) support
Definition: resize.c:94
#define MagickEpsilon
Definition: magick-type.h:110
double sigma
Definition: geometry.h:106
ClassType storage_class
Definition: image.h:154
static double SincFast(const double, const ResizeFilter *)
Definition: log.h:52
ssize_t MagickOffsetType
Definition: magick-type.h:127
MagickExport Image * ThumbnailImage(const Image *image, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: resize.c:3667
Definition: image.h:151
double x
Definition: geometry.h:123
#define MagickCoreSignature
static MagickBooleanType HorizontalFilter(const ResizeFilter *resize_filter, const Image *image, Image *resize_image, const double x_factor, const MagickSizeType span, MagickOffsetType *offset, ExceptionInfo *exception)
Definition: resize.c:2427
static double Lagrange(const double x, const ResizeFilter *resize_filter)
Definition: resize.c:382
MagickExport void GetPathComponent(const char *path, PathType type, char *component)
Definition: utility.c:1213
MagickExport ssize_t FormatLocaleFile(FILE *file, const char *magick_restrict format,...)
Definition: locale.c:409
MagickExport MagickBooleanType SetImageAlphaChannel(Image *image, const AlphaChannelOption alpha_type, ExceptionInfo *exception)
Definition: channel.c:966
MagickBooleanType
Definition: magick-type.h:156
size_t signature
Definition: resize.c:105
unsigned int MagickStatusType
Definition: magick-type.h:119
static double PerceptibleReciprocal(const double x)
MagickPrivate double GetResizeFilterSupport(const ResizeFilter *resize_filter)
Definition: resize.c:1613
MagickExport void LocaleLower(char *string)
Definition: locale.c:1493
ClassType
Definition: magick-type.h:149
static double BesselOrderOne(double)
Definition: resize.c:1491
MagickExport const char * CommandOptionToMnemonic(const CommandOption option, const ssize_t type)
Definition: option.c:2676
static double Cosine(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:195
#define Magick2PI
Definition: image-private.h:28
static ContributionInfo ** DestroyContributionThreadSet(ContributionInfo **contribution)
Definition: resize.c:2385
static Quantum GetPixelWriteMask(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
MagickExport Image * MinifyImage(const Image *image, ExceptionInfo *exception)
Definition: resize.c:2253
MagickExport void * AcquireQuantumMemory(const size_t count, const size_t quantum)
Definition: memory.c:533
static double P1(double x)
Definition: resize.c:1412
double y
Definition: geometry.h:123
static int GetOpenMPThreadId(void)
MagickExport MagickBooleanType InterpolatePixelChannels(const Image *source, const CacheView_ *source_view, const Image *destination, const PixelInterpolateMethod method, const double x, const double y, Quantum *pixel, ExceptionInfo *exception)
Definition: pixel.c:4910
MagickExport MagickBooleanType SetImageProperty(Image *image, const char *property, const char *value, ExceptionInfo *exception)
Definition: property.c:4126
#define magick_unused(x)
RectangleInfo page
Definition: image.h:212
size_t magick_columns
Definition: image.h:324
MagickPrivate ResizeWeightingFunctionType GetResizeFilterWeightingType(const ResizeFilter *resize_filter)
Definition: resize.c:1597
size_t MagickSizeType
Definition: magick-type.h:128
#define MagnifyImageTag
#define MagickPathExtent
MagickPrivate double * GetResizeFilterCoefficient(const ResizeFilter *resize_filter)
Definition: resize.c:1567
MagickExport void * RelinquishAlignedMemory(void *memory)
Definition: memory.c:1017
MagickExport MagickBooleanType IsStringTrue(const char *value)
Definition: string.c:1505
PixelTrait alpha_trait
Definition: image.h:280
MagickExport int GetMagickPrecision(void)
Definition: magick.c:877
MagickExport Quantum * QueueCacheViewAuthenticPixels(CacheView *cache_view, const ssize_t x, const ssize_t y, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: cache-view.c:977
char magick_filename[MagickPathExtent]
Definition: image.h:319
MagickExport MagickBooleanType ThrowMagickException(ExceptionInfo *exception, const char *module, const char *function, const size_t line, const ExceptionType severity, const char *tag, const char *format,...)
Definition: exception.c:1064
static double Triangle(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:543
MagickExport MagickBooleanType LogMagickEvent(const LogEventType type, const char *module, const char *function, const size_t line, const char *format,...)
Definition: log.c:1398
size_t signature
Definition: image.h:354
MagickExport MagickSizeType GetMagickResourceLimit(const ResourceType type)
Definition: resource.c:745
#define QuantumScale
Definition: magick-type.h:113
size_t columns
Definition: image.h:172
struct _ContributionInfo ContributionInfo
MagickBooleanType(* MagickProgressMonitor)(const char *, const MagickOffsetType, const MagickSizeType, void *)
Definition: monitor.h:26
static double Quadratic(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:415
MagickExport MagickBooleanType SetImageStorageClass(Image *image, const ClassType storage_class, ExceptionInfo *exception)
Definition: image.c:2613
MagickExport size_t CopyMagickString(char *destination, const char *source, const size_t length)
Definition: string.c:755
MagickExport Image * ResampleImage(const Image *image, const double x_resolution, const double y_resolution, const FilterType filter, ExceptionInfo *exception)
Definition: resize.c:2303
PixelChannel
Definition: pixel.h:67
MagickExport void * AcquireAlignedMemory(const size_t count, const size_t quantum)
Definition: memory.c:242
MagickPrivate ResizeWeightingFunctionType GetResizeFilterWindowWeightingType(const ResizeFilter *resize_filter)
Definition: resize.c:1605
MagickExport char * GetNextImageProfile(const Image *image)
Definition: profile.c:314
#define MagickMax(x, y)
Definition: image-private.h:26
double(*)(*) scale
Definition: resize.c:94
static size_t GetPixelChannels(const Image *magick_restrict image)
MagickExport int LocaleCompare(const char *p, const char *q)
Definition: locale.c:1440
MagickPrivate ResizeFilter * DestroyResizeFilter(ResizeFilter *resize_filter)
Definition: resize.c:1534
char filename[MagickPathExtent]
Definition: image.h:319
#define GetMagickModule()
Definition: log.h:28
#define ThrowImageException(severity, tag)
static Quantum ClampToQuantum(const MagickRealType value)
Definition: quantum.h:84
static PixelChannel GetPixelChannelChannel(const Image *magick_restrict image, const ssize_t offset)
MagickExport CacheView * AcquireVirtualCacheView(const Image *image, ExceptionInfo *exception)
Definition: cache-view.c:149
static double Welch(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:558
MagickExport MagickSizeType GetBlobSize(const Image *image)
Definition: blob.c:1803
MagickExport Image * MagnifyImage(const Image *image, ExceptionInfo *exception)
Definition: resize.c:2062
MagickExport Image * AdaptiveResizeImage(const Image *image, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: resize.c:1290
unsigned short Quantum
Definition: magick-type.h:82
static double Sinc(const double, const ResizeFilter *)
static double CubicBC(const double x, const ResizeFilter *resize_filter)
Definition: resize.c:207
MagickExport MagickBooleanType DeleteImageProperty(Image *image, const char *property)
Definition: property.c:288
MagickPrivate double GetResizeFilterBlur(const ResizeFilter *resize_filter)
Definition: resize.c:1575
MagickPrivate double GetResizeFilterWeight(const ResizeFilter *resize_filter, const double x)
Definition: resize.c:1647
ResizeWeightingFunctionType
#define InterpolativeResizeImageTag
double(* filter)(const double, const ResizeFilter *)
Definition: resize.c:92
MagickExport MagickStatusType ParseGeometry(const char *geometry, GeometryInfo *geometry_info)
Definition: geometry.c:853
static void SetPixelChannel(const Image *magick_restrict image, const PixelChannel channel, const Quantum quantum, Quantum *magick_restrict pixel)
MagickPrivate ResizeFilter * AcquireResizeFilter(const Image *image, const FilterType filter, const MagickBooleanType cylindrical, ExceptionInfo *exception)
Definition: resize.c:757
static double Hamming(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:334
#define MagickMin(x, y)
Definition: image-private.h:27
static double Bohman(const double x, const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:164
MagickExport void * RelinquishMagickMemory(void *memory)
Definition: memory.c:1054
#define MaxPixelChannels
Definition: pixel.h:27
PointInfo resolution
Definition: image.h:209
#define magick_unreferenced(x)
ResizeWeightingFunctionType filterWeightingType
Definition: resize.c:101
#define MagickPrivate
MagickExport void ResetImageProfileIterator(const Image *image)
Definition: profile.c:1352
#define MagickExport
MagickExport Image * ScaleImage(const Image *image, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: resize.c:3208
MagickExport MagickBooleanType SyncCacheViewAuthenticPixels(CacheView *magick_restrict cache_view, ExceptionInfo *exception)
Definition: cache-view.c:1100
static double Gaussian(const double x, const ResizeFilter *resize_filter)
Definition: resize.c:287
MagickExport CacheView * AcquireAuthenticCacheView(const Image *image, ExceptionInfo *exception)
Definition: cache-view.c:112
#define SampleImageTag
MagickExport Image * InterpolativeResizeImage(const Image *image, const size_t columns, const size_t rows, const PixelInterpolateMethod method, ExceptionInfo *exception)
Definition: resize.c:1706
PixelTrait
Definition: pixel.h:135
MagickExport void * GetVirtualMemoryBlob(const MemoryInfo *memory_info)
Definition: memory.c:948
MagickExport MagickRealType GetPixelIntensity(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
Definition: pixel.c:2358
MagickExport size_t GetImageListLength(const Image *images)
Definition: list.c:690
static double Kaiser(const double x, const ResizeFilter *resize_filter)
Definition: resize.c:364
double(*)(*) window(const double, const ResizeFilter *)
Definition: resize.c:93
MagickExport Image * DestroyImage(Image *image)
Definition: image.c:1177
MagickExport Image * CloneImage(const Image *image, const size_t columns, const size_t rows, const MagickBooleanType detach, ExceptionInfo *exception)
Definition: image.c:794
static double Box(const double magick_unused(x), const ResizeFilter *magick_unused(resize_filter))
Definition: resize.c:181
#define QuantumRange
Definition: magick-type.h:83
static double J1(double x)
Definition: resize.c:1366
static double CubicSpline(const double x, const ResizeFilter *resize_filter)
Definition: resize.c:247
MagickBooleanType debug
Definition: image.h:334
size_t depth
Definition: image.h:172