MagickCore  7.0.7
Convert, Edit, Or Compose Bitmap Images
feature.c
Go to the documentation of this file.
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % %
4 % %
5 % %
6 % FFFFF EEEEE AAA TTTTT U U RRRR EEEEE %
7 % F E A A T U U R R E %
8 % FFF EEE AAAAA T U U RRRR EEE %
9 % F E A A T U U R R E %
10 % F EEEEE A A T UUU R R EEEEE %
11 % %
12 % %
13 % MagickCore Image Feature Methods %
14 % %
15 % Software Design %
16 % Cristy %
17 % July 1992 %
18 % %
19 % %
20 % Copyright 1999-2018 ImageMagick Studio LLC, a non-profit organization %
21 % dedicated to making software imaging solutions freely available. %
22 % %
23 % You may not use this file except in compliance with the License. You may %
24 % obtain a copy of the License at %
25 % %
26 % https://www.imagemagick.org/script/license.php %
27 % %
28 % Unless required by applicable law or agreed to in writing, software %
29 % distributed under the License is distributed on an "AS IS" BASIS, %
30 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31 % See the License for the specific language governing permissions and %
32 % limitations under the License. %
33 % %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 
40 /*
41  Include declarations.
42 */
43 #include "MagickCore/studio.h"
44 #include "MagickCore/animate.h"
45 #include "MagickCore/artifact.h"
46 #include "MagickCore/blob.h"
48 #include "MagickCore/cache.h"
50 #include "MagickCore/cache-view.h"
51 #include "MagickCore/channel.h"
52 #include "MagickCore/client.h"
53 #include "MagickCore/color.h"
55 #include "MagickCore/colorspace.h"
57 #include "MagickCore/composite.h"
59 #include "MagickCore/compress.h"
60 #include "MagickCore/constitute.h"
61 #include "MagickCore/display.h"
62 #include "MagickCore/draw.h"
63 #include "MagickCore/enhance.h"
64 #include "MagickCore/exception.h"
66 #include "MagickCore/feature.h"
67 #include "MagickCore/gem.h"
68 #include "MagickCore/geometry.h"
69 #include "MagickCore/list.h"
71 #include "MagickCore/magic.h"
72 #include "MagickCore/magick.h"
73 #include "MagickCore/matrix.h"
74 #include "MagickCore/memory_.h"
75 #include "MagickCore/module.h"
76 #include "MagickCore/monitor.h"
79 #include "MagickCore/option.h"
80 #include "MagickCore/paint.h"
82 #include "MagickCore/profile.h"
83 #include "MagickCore/property.h"
84 #include "MagickCore/quantize.h"
86 #include "MagickCore/random_.h"
87 #include "MagickCore/resource_.h"
88 #include "MagickCore/segment.h"
89 #include "MagickCore/semaphore.h"
91 #include "MagickCore/string_.h"
93 #include "MagickCore/timer.h"
94 #include "MagickCore/utility.h"
95 #include "MagickCore/version.h"
96 
97 /*
98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99 % %
100 % %
101 % %
102 % C a n n y E d g e I m a g e %
103 % %
104 % %
105 % %
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 %
108 % CannyEdgeImage() uses a multi-stage algorithm to detect a wide range of
109 % edges in images.
110 %
111 % The format of the CannyEdgeImage method is:
112 %
113 % Image *CannyEdgeImage(const Image *image,const double radius,
114 % const double sigma,const double lower_percent,
115 % const double upper_percent,ExceptionInfo *exception)
116 %
117 % A description of each parameter follows:
118 %
119 % o image: the image.
120 %
121 % o radius: the radius of the gaussian smoothing filter.
122 %
123 % o sigma: the sigma of the gaussian smoothing filter.
124 %
125 % o lower_percent: percentage of edge pixels in the lower threshold.
126 %
127 % o upper_percent: percentage of edge pixels in the upper threshold.
128 %
129 % o exception: return any errors or warnings in this structure.
130 %
131 */
132 
133 typedef struct _CannyInfo
134 {
135  double
137  intensity;
138 
139  int
141 
142  ssize_t
143  x,
144  y;
145 } CannyInfo;
146 
147 static inline MagickBooleanType IsAuthenticPixel(const Image *image,
148  const ssize_t x,const ssize_t y)
149 {
150  if ((x < 0) || (x >= (ssize_t) image->columns))
151  return(MagickFalse);
152  if ((y < 0) || (y >= (ssize_t) image->rows))
153  return(MagickFalse);
154  return(MagickTrue);
155 }
156 
157 static MagickBooleanType TraceEdges(Image *edge_image,CacheView *edge_view,
158  MatrixInfo *canny_cache,const ssize_t x,const ssize_t y,
159  const double lower_threshold,ExceptionInfo *exception)
160 {
161  CannyInfo
162  edge,
163  pixel;
164 
166  status;
167 
168  register Quantum
169  *q;
170 
171  register ssize_t
172  i;
173 
174  q=GetCacheViewAuthenticPixels(edge_view,x,y,1,1,exception);
175  if (q == (Quantum *) NULL)
176  return(MagickFalse);
177  *q=QuantumRange;
178  status=SyncCacheViewAuthenticPixels(edge_view,exception);
179  if (status == MagickFalse)
180  return(MagickFalse);
181  if (GetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
182  return(MagickFalse);
183  edge.x=x;
184  edge.y=y;
185  if (SetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
186  return(MagickFalse);
187  for (i=1; i != 0; )
188  {
189  ssize_t
190  v;
191 
192  i--;
193  status=GetMatrixElement(canny_cache,i,0,&edge);
194  if (status == MagickFalse)
195  return(MagickFalse);
196  for (v=(-1); v <= 1; v++)
197  {
198  ssize_t
199  u;
200 
201  for (u=(-1); u <= 1; u++)
202  {
203  if ((u == 0) && (v == 0))
204  continue;
205  if (IsAuthenticPixel(edge_image,edge.x+u,edge.y+v) == MagickFalse)
206  continue;
207  /*
208  Not an edge if gradient value is below the lower threshold.
209  */
210  q=GetCacheViewAuthenticPixels(edge_view,edge.x+u,edge.y+v,1,1,
211  exception);
212  if (q == (Quantum *) NULL)
213  return(MagickFalse);
214  status=GetMatrixElement(canny_cache,edge.x+u,edge.y+v,&pixel);
215  if (status == MagickFalse)
216  return(MagickFalse);
217  if ((GetPixelIntensity(edge_image,q) == 0.0) &&
218  (pixel.intensity >= lower_threshold))
219  {
220  *q=QuantumRange;
221  status=SyncCacheViewAuthenticPixels(edge_view,exception);
222  if (status == MagickFalse)
223  return(MagickFalse);
224  edge.x+=u;
225  edge.y+=v;
226  status=SetMatrixElement(canny_cache,i,0,&edge);
227  if (status == MagickFalse)
228  return(MagickFalse);
229  i++;
230  }
231  }
232  }
233  }
234  return(MagickTrue);
235 }
236 
237 MagickExport Image *CannyEdgeImage(const Image *image,const double radius,
238  const double sigma,const double lower_percent,const double upper_percent,
239  ExceptionInfo *exception)
240 {
241 #define CannyEdgeImageTag "CannyEdge/Image"
242 
243  CacheView
244  *edge_view;
245 
246  CannyInfo
247  element;
248 
249  char
250  geometry[MagickPathExtent];
251 
252  double
253  lower_threshold,
254  max,
255  min,
256  upper_threshold;
257 
258  Image
259  *edge_image;
260 
261  KernelInfo
262  *kernel_info;
263 
265  status;
266 
268  progress;
269 
270  MatrixInfo
271  *canny_cache;
272 
273  ssize_t
274  y;
275 
276  assert(image != (const Image *) NULL);
277  assert(image->signature == MagickCoreSignature);
278  if (image->debug != MagickFalse)
279  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
280  assert(exception != (ExceptionInfo *) NULL);
281  assert(exception->signature == MagickCoreSignature);
282  /*
283  Filter out noise.
284  */
285  (void) FormatLocaleString(geometry,MagickPathExtent,
286  "blur:%.20gx%.20g;blur:%.20gx%.20g+90",radius,sigma,radius,sigma);
287  kernel_info=AcquireKernelInfo(geometry,exception);
288  if (kernel_info == (KernelInfo *) NULL)
289  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
290  edge_image=MorphologyImage(image,ConvolveMorphology,1,kernel_info,exception);
291  kernel_info=DestroyKernelInfo(kernel_info);
292  if (edge_image == (Image *) NULL)
293  return((Image *) NULL);
294  if (TransformImageColorspace(edge_image,GRAYColorspace,exception) == MagickFalse)
295  {
296  edge_image=DestroyImage(edge_image);
297  return((Image *) NULL);
298  }
299  (void) SetImageAlphaChannel(edge_image,OffAlphaChannel,exception);
300  /*
301  Find the intensity gradient of the image.
302  */
303  canny_cache=AcquireMatrixInfo(edge_image->columns,edge_image->rows,
304  sizeof(CannyInfo),exception);
305  if (canny_cache == (MatrixInfo *) NULL)
306  {
307  edge_image=DestroyImage(edge_image);
308  return((Image *) NULL);
309  }
310  status=MagickTrue;
311  edge_view=AcquireVirtualCacheView(edge_image,exception);
312 #if defined(MAGICKCORE_OPENMP_SUPPORT)
313  #pragma omp parallel for schedule(static,4) shared(status) \
314  magick_number_threads(edge_image,edge_image,edge_image->rows,1)
315 #endif
316  for (y=0; y < (ssize_t) edge_image->rows; y++)
317  {
318  register const Quantum
319  *magick_restrict p;
320 
321  register ssize_t
322  x;
323 
324  if (status == MagickFalse)
325  continue;
326  p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns+1,2,
327  exception);
328  if (p == (const Quantum *) NULL)
329  {
330  status=MagickFalse;
331  continue;
332  }
333  for (x=0; x < (ssize_t) edge_image->columns; x++)
334  {
335  CannyInfo
336  pixel;
337 
338  double
339  dx,
340  dy;
341 
342  register const Quantum
343  *magick_restrict kernel_pixels;
344 
345  ssize_t
346  v;
347 
348  static double
349  Gx[2][2] =
350  {
351  { -1.0, +1.0 },
352  { -1.0, +1.0 }
353  },
354  Gy[2][2] =
355  {
356  { +1.0, +1.0 },
357  { -1.0, -1.0 }
358  };
359 
360  (void) ResetMagickMemory(&pixel,0,sizeof(pixel));
361  dx=0.0;
362  dy=0.0;
363  kernel_pixels=p;
364  for (v=0; v < 2; v++)
365  {
366  ssize_t
367  u;
368 
369  for (u=0; u < 2; u++)
370  {
371  double
372  intensity;
373 
374  intensity=GetPixelIntensity(edge_image,kernel_pixels+u);
375  dx+=0.5*Gx[v][u]*intensity;
376  dy+=0.5*Gy[v][u]*intensity;
377  }
378  kernel_pixels+=edge_image->columns+1;
379  }
380  pixel.magnitude=hypot(dx,dy);
381  pixel.orientation=0;
382  if (fabs(dx) > MagickEpsilon)
383  {
384  double
385  slope;
386 
387  slope=dy/dx;
388  if (slope < 0.0)
389  {
390  if (slope < -2.41421356237)
391  pixel.orientation=0;
392  else
393  if (slope < -0.414213562373)
394  pixel.orientation=1;
395  else
396  pixel.orientation=2;
397  }
398  else
399  {
400  if (slope > 2.41421356237)
401  pixel.orientation=0;
402  else
403  if (slope > 0.414213562373)
404  pixel.orientation=3;
405  else
406  pixel.orientation=2;
407  }
408  }
409  if (SetMatrixElement(canny_cache,x,y,&pixel) == MagickFalse)
410  continue;
411  p+=GetPixelChannels(edge_image);
412  }
413  }
414  edge_view=DestroyCacheView(edge_view);
415  /*
416  Non-maxima suppression, remove pixels that are not considered to be part
417  of an edge.
418  */
419  progress=0;
420  (void) GetMatrixElement(canny_cache,0,0,&element);
421  max=element.intensity;
422  min=element.intensity;
423  edge_view=AcquireAuthenticCacheView(edge_image,exception);
424 #if defined(MAGICKCORE_OPENMP_SUPPORT)
425  #pragma omp parallel for schedule(static,4) shared(status) \
426  magick_number_threads(edge_image,edge_image,edge_image->rows,1)
427 #endif
428  for (y=0; y < (ssize_t) edge_image->rows; y++)
429  {
430  register Quantum
431  *magick_restrict q;
432 
433  register ssize_t
434  x;
435 
436  if (status == MagickFalse)
437  continue;
438  q=GetCacheViewAuthenticPixels(edge_view,0,y,edge_image->columns,1,
439  exception);
440  if (q == (Quantum *) NULL)
441  {
442  status=MagickFalse;
443  continue;
444  }
445  for (x=0; x < (ssize_t) edge_image->columns; x++)
446  {
447  CannyInfo
448  alpha_pixel,
449  beta_pixel,
450  pixel;
451 
452  (void) GetMatrixElement(canny_cache,x,y,&pixel);
453  switch (pixel.orientation)
454  {
455  case 0:
456  default:
457  {
458  /*
459  0 degrees, north and south.
460  */
461  (void) GetMatrixElement(canny_cache,x,y-1,&alpha_pixel);
462  (void) GetMatrixElement(canny_cache,x,y+1,&beta_pixel);
463  break;
464  }
465  case 1:
466  {
467  /*
468  45 degrees, northwest and southeast.
469  */
470  (void) GetMatrixElement(canny_cache,x-1,y-1,&alpha_pixel);
471  (void) GetMatrixElement(canny_cache,x+1,y+1,&beta_pixel);
472  break;
473  }
474  case 2:
475  {
476  /*
477  90 degrees, east and west.
478  */
479  (void) GetMatrixElement(canny_cache,x-1,y,&alpha_pixel);
480  (void) GetMatrixElement(canny_cache,x+1,y,&beta_pixel);
481  break;
482  }
483  case 3:
484  {
485  /*
486  135 degrees, northeast and southwest.
487  */
488  (void) GetMatrixElement(canny_cache,x+1,y-1,&beta_pixel);
489  (void) GetMatrixElement(canny_cache,x-1,y+1,&alpha_pixel);
490  break;
491  }
492  }
493  pixel.intensity=pixel.magnitude;
494  if ((pixel.magnitude < alpha_pixel.magnitude) ||
495  (pixel.magnitude < beta_pixel.magnitude))
496  pixel.intensity=0;
497  (void) SetMatrixElement(canny_cache,x,y,&pixel);
498 #if defined(MAGICKCORE_OPENMP_SUPPORT)
499  #pragma omp critical (MagickCore_CannyEdgeImage)
500 #endif
501  {
502  if (pixel.intensity < min)
503  min=pixel.intensity;
504  if (pixel.intensity > max)
505  max=pixel.intensity;
506  }
507  *q=0;
508  q+=GetPixelChannels(edge_image);
509  }
510  if (SyncCacheViewAuthenticPixels(edge_view,exception) == MagickFalse)
511  status=MagickFalse;
512  }
513  edge_view=DestroyCacheView(edge_view);
514  /*
515  Estimate hysteresis threshold.
516  */
517  lower_threshold=lower_percent*(max-min)+min;
518  upper_threshold=upper_percent*(max-min)+min;
519  /*
520  Hysteresis threshold.
521  */
522  edge_view=AcquireAuthenticCacheView(edge_image,exception);
523  for (y=0; y < (ssize_t) edge_image->rows; y++)
524  {
525  register ssize_t
526  x;
527 
528  if (status == MagickFalse)
529  continue;
530  for (x=0; x < (ssize_t) edge_image->columns; x++)
531  {
532  CannyInfo
533  pixel;
534 
535  register const Quantum
536  *magick_restrict p;
537 
538  /*
539  Edge if pixel gradient higher than upper threshold.
540  */
541  p=GetCacheViewVirtualPixels(edge_view,x,y,1,1,exception);
542  if (p == (const Quantum *) NULL)
543  continue;
544  status=GetMatrixElement(canny_cache,x,y,&pixel);
545  if (status == MagickFalse)
546  continue;
547  if ((GetPixelIntensity(edge_image,p) == 0.0) &&
548  (pixel.intensity >= upper_threshold))
549  status=TraceEdges(edge_image,edge_view,canny_cache,x,y,lower_threshold,
550  exception);
551  }
552  if (image->progress_monitor != (MagickProgressMonitor) NULL)
553  {
555  proceed;
556 
557 #if defined(MAGICKCORE_OPENMP_SUPPORT)
558  #pragma omp critical (MagickCore_CannyEdgeImage)
559 #endif
560  proceed=SetImageProgress(image,CannyEdgeImageTag,progress++,
561  image->rows);
562  if (proceed == MagickFalse)
563  status=MagickFalse;
564  }
565  }
566  edge_view=DestroyCacheView(edge_view);
567  /*
568  Free resources.
569  */
570  canny_cache=DestroyMatrixInfo(canny_cache);
571  return(edge_image);
572 }
573 
574 /*
575 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
576 % %
577 % %
578 % %
579 % G e t I m a g e F e a t u r e s %
580 % %
581 % %
582 % %
583 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
584 %
585 % GetImageFeatures() returns features for each channel in the image in
586 % each of four directions (horizontal, vertical, left and right diagonals)
587 % for the specified distance. The features include the angular second
588 % moment, contrast, correlation, sum of squares: variance, inverse difference
589 % moment, sum average, sum varience, sum entropy, entropy, difference variance,% difference entropy, information measures of correlation 1, information
590 % measures of correlation 2, and maximum correlation coefficient. You can
591 % access the red channel contrast, for example, like this:
592 %
593 % channel_features=GetImageFeatures(image,1,exception);
594 % contrast=channel_features[RedPixelChannel].contrast[0];
595 %
596 % Use MagickRelinquishMemory() to free the features buffer.
597 %
598 % The format of the GetImageFeatures method is:
599 %
600 % ChannelFeatures *GetImageFeatures(const Image *image,
601 % const size_t distance,ExceptionInfo *exception)
602 %
603 % A description of each parameter follows:
604 %
605 % o image: the image.
606 %
607 % o distance: the distance.
608 %
609 % o exception: return any errors or warnings in this structure.
610 %
611 */
612 
613 static inline double MagickLog10(const double x)
614 {
615 #define Log10Epsilon (1.0e-11)
616 
617  if (fabs(x) < Log10Epsilon)
618  return(log10(Log10Epsilon));
619  return(log10(fabs(x)));
620 }
621 
623  const size_t distance,ExceptionInfo *exception)
624 {
625  typedef struct _ChannelStatistics
626  {
627  PixelInfo
628  direction[4]; /* horizontal, vertical, left and right diagonals */
630 
631  CacheView
632  *image_view;
633 
635  *channel_features;
636 
638  **cooccurrence,
639  correlation,
640  *density_x,
641  *density_xy,
642  *density_y,
643  entropy_x,
644  entropy_xy,
645  entropy_xy1,
646  entropy_xy2,
647  entropy_y,
648  mean,
649  **Q,
650  *sum,
651  sum_squares,
652  variance;
653 
655  gray,
656  *grays;
657 
659  status;
660 
661  register ssize_t
662  i,
663  r;
664 
665  size_t
666  length;
667 
668  unsigned int
669  number_grays;
670 
671  assert(image != (Image *) NULL);
672  assert(image->signature == MagickCoreSignature);
673  if (image->debug != MagickFalse)
674  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
675  if ((image->columns < (distance+1)) || (image->rows < (distance+1)))
676  return((ChannelFeatures *) NULL);
677  length=MaxPixelChannels+1UL;
678  channel_features=(ChannelFeatures *) AcquireQuantumMemory(length,
679  sizeof(*channel_features));
680  if (channel_features == (ChannelFeatures *) NULL)
681  ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
682  (void) ResetMagickMemory(channel_features,0,length*
683  sizeof(*channel_features));
684  /*
685  Form grays.
686  */
687  grays=(PixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*grays));
688  if (grays == (PixelPacket *) NULL)
689  {
690  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
691  channel_features);
692  (void) ThrowMagickException(exception,GetMagickModule(),
693  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
694  return(channel_features);
695  }
696  for (i=0; i <= (ssize_t) MaxMap; i++)
697  {
698  grays[i].red=(~0U);
699  grays[i].green=(~0U);
700  grays[i].blue=(~0U);
701  grays[i].alpha=(~0U);
702  grays[i].black=(~0U);
703  }
704  status=MagickTrue;
705  image_view=AcquireVirtualCacheView(image,exception);
706 #if defined(MAGICKCORE_OPENMP_SUPPORT)
707  #pragma omp parallel for schedule(static,4) shared(status) \
708  magick_number_threads(image,image,image->rows,1)
709 #endif
710  for (r=0; r < (ssize_t) image->rows; r++)
711  {
712  register const Quantum
713  *magick_restrict p;
714 
715  register ssize_t
716  x;
717 
718  if (status == MagickFalse)
719  continue;
720  p=GetCacheViewVirtualPixels(image_view,0,r,image->columns,1,exception);
721  if (p == (const Quantum *) NULL)
722  {
723  status=MagickFalse;
724  continue;
725  }
726  for (x=0; x < (ssize_t) image->columns; x++)
727  {
728  grays[ScaleQuantumToMap(GetPixelRed(image,p))].red=
729  ScaleQuantumToMap(GetPixelRed(image,p));
730  grays[ScaleQuantumToMap(GetPixelGreen(image,p))].green=
731  ScaleQuantumToMap(GetPixelGreen(image,p));
732  grays[ScaleQuantumToMap(GetPixelBlue(image,p))].blue=
733  ScaleQuantumToMap(GetPixelBlue(image,p));
734  if (image->colorspace == CMYKColorspace)
735  grays[ScaleQuantumToMap(GetPixelBlack(image,p))].black=
736  ScaleQuantumToMap(GetPixelBlack(image,p));
737  if (image->alpha_trait != UndefinedPixelTrait)
738  grays[ScaleQuantumToMap(GetPixelAlpha(image,p))].alpha=
739  ScaleQuantumToMap(GetPixelAlpha(image,p));
740  p+=GetPixelChannels(image);
741  }
742  }
743  image_view=DestroyCacheView(image_view);
744  if (status == MagickFalse)
745  {
746  grays=(PixelPacket *) RelinquishMagickMemory(grays);
747  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
748  channel_features);
749  return(channel_features);
750  }
751  (void) ResetMagickMemory(&gray,0,sizeof(gray));
752  for (i=0; i <= (ssize_t) MaxMap; i++)
753  {
754  if (grays[i].red != ~0U)
755  grays[gray.red++].red=grays[i].red;
756  if (grays[i].green != ~0U)
757  grays[gray.green++].green=grays[i].green;
758  if (grays[i].blue != ~0U)
759  grays[gray.blue++].blue=grays[i].blue;
760  if (image->colorspace == CMYKColorspace)
761  if (grays[i].black != ~0U)
762  grays[gray.black++].black=grays[i].black;
763  if (image->alpha_trait != UndefinedPixelTrait)
764  if (grays[i].alpha != ~0U)
765  grays[gray.alpha++].alpha=grays[i].alpha;
766  }
767  /*
768  Allocate spatial dependence matrix.
769  */
770  number_grays=gray.red;
771  if (gray.green > number_grays)
772  number_grays=gray.green;
773  if (gray.blue > number_grays)
774  number_grays=gray.blue;
775  if (image->colorspace == CMYKColorspace)
776  if (gray.black > number_grays)
777  number_grays=gray.black;
778  if (image->alpha_trait != UndefinedPixelTrait)
779  if (gray.alpha > number_grays)
780  number_grays=gray.alpha;
781  cooccurrence=(ChannelStatistics **) AcquireQuantumMemory(number_grays,
782  sizeof(*cooccurrence));
783  density_x=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
784  sizeof(*density_x));
785  density_xy=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
786  sizeof(*density_xy));
787  density_y=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
788  sizeof(*density_y));
789  Q=(ChannelStatistics **) AcquireQuantumMemory(number_grays,sizeof(*Q));
790  sum=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(*sum));
791  if ((cooccurrence == (ChannelStatistics **) NULL) ||
792  (density_x == (ChannelStatistics *) NULL) ||
793  (density_xy == (ChannelStatistics *) NULL) ||
794  (density_y == (ChannelStatistics *) NULL) ||
795  (Q == (ChannelStatistics **) NULL) ||
796  (sum == (ChannelStatistics *) NULL))
797  {
798  if (Q != (ChannelStatistics **) NULL)
799  {
800  for (i=0; i < (ssize_t) number_grays; i++)
803  }
804  if (sum != (ChannelStatistics *) NULL)
806  if (density_y != (ChannelStatistics *) NULL)
807  density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
808  if (density_xy != (ChannelStatistics *) NULL)
809  density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
810  if (density_x != (ChannelStatistics *) NULL)
811  density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
812  if (cooccurrence != (ChannelStatistics **) NULL)
813  {
814  for (i=0; i < (ssize_t) number_grays; i++)
815  cooccurrence[i]=(ChannelStatistics *)
816  RelinquishMagickMemory(cooccurrence[i]);
817  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(
818  cooccurrence);
819  }
820  grays=(PixelPacket *) RelinquishMagickMemory(grays);
821  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
822  channel_features);
823  (void) ThrowMagickException(exception,GetMagickModule(),
824  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
825  return(channel_features);
826  }
827  (void) ResetMagickMemory(&correlation,0,sizeof(correlation));
828  (void) ResetMagickMemory(density_x,0,2*(number_grays+1)*sizeof(*density_x));
829  (void) ResetMagickMemory(density_xy,0,2*(number_grays+1)*sizeof(*density_xy));
830  (void) ResetMagickMemory(density_y,0,2*(number_grays+1)*sizeof(*density_y));
831  (void) ResetMagickMemory(&mean,0,sizeof(mean));
832  (void) ResetMagickMemory(sum,0,number_grays*sizeof(*sum));
833  (void) ResetMagickMemory(&sum_squares,0,sizeof(sum_squares));
834  (void) ResetMagickMemory(density_xy,0,2*number_grays*sizeof(*density_xy));
835  (void) ResetMagickMemory(&entropy_x,0,sizeof(entropy_x));
836  (void) ResetMagickMemory(&entropy_xy,0,sizeof(entropy_xy));
837  (void) ResetMagickMemory(&entropy_xy1,0,sizeof(entropy_xy1));
838  (void) ResetMagickMemory(&entropy_xy2,0,sizeof(entropy_xy2));
839  (void) ResetMagickMemory(&entropy_y,0,sizeof(entropy_y));
840  (void) ResetMagickMemory(&variance,0,sizeof(variance));
841  for (i=0; i < (ssize_t) number_grays; i++)
842  {
843  cooccurrence[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,
844  sizeof(**cooccurrence));
845  Q[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(**Q));
846  if ((cooccurrence[i] == (ChannelStatistics *) NULL) ||
847  (Q[i] == (ChannelStatistics *) NULL))
848  break;
849  (void) ResetMagickMemory(cooccurrence[i],0,number_grays*
850  sizeof(**cooccurrence));
851  (void) ResetMagickMemory(Q[i],0,number_grays*sizeof(**Q));
852  }
853  if (i < (ssize_t) number_grays)
854  {
855  for (i--; i >= 0; i--)
856  {
857  if (Q[i] != (ChannelStatistics *) NULL)
859  if (cooccurrence[i] != (ChannelStatistics *) NULL)
860  cooccurrence[i]=(ChannelStatistics *)
861  RelinquishMagickMemory(cooccurrence[i]);
862  }
864  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
866  density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
867  density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
868  density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
869  grays=(PixelPacket *) RelinquishMagickMemory(grays);
870  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
871  channel_features);
872  (void) ThrowMagickException(exception,GetMagickModule(),
873  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
874  return(channel_features);
875  }
876  /*
877  Initialize spatial dependence matrix.
878  */
879  status=MagickTrue;
880  image_view=AcquireVirtualCacheView(image,exception);
881  for (r=0; r < (ssize_t) image->rows; r++)
882  {
883  register const Quantum
884  *magick_restrict p;
885 
886  register ssize_t
887  x;
888 
889  ssize_t
890  offset,
891  u,
892  v;
893 
894  if (status == MagickFalse)
895  continue;
896  p=GetCacheViewVirtualPixels(image_view,-(ssize_t) distance,r,image->columns+
897  2*distance,distance+2,exception);
898  if (p == (const Quantum *) NULL)
899  {
900  status=MagickFalse;
901  continue;
902  }
903  p+=distance*GetPixelChannels(image);;
904  for (x=0; x < (ssize_t) image->columns; x++)
905  {
906  for (i=0; i < 4; i++)
907  {
908  switch (i)
909  {
910  case 0:
911  default:
912  {
913  /*
914  Horizontal adjacency.
915  */
916  offset=(ssize_t) distance;
917  break;
918  }
919  case 1:
920  {
921  /*
922  Vertical adjacency.
923  */
924  offset=(ssize_t) (image->columns+2*distance);
925  break;
926  }
927  case 2:
928  {
929  /*
930  Right diagonal adjacency.
931  */
932  offset=(ssize_t) ((image->columns+2*distance)-distance);
933  break;
934  }
935  case 3:
936  {
937  /*
938  Left diagonal adjacency.
939  */
940  offset=(ssize_t) ((image->columns+2*distance)+distance);
941  break;
942  }
943  }
944  u=0;
945  v=0;
946  while (grays[u].red != ScaleQuantumToMap(GetPixelRed(image,p)))
947  u++;
948  while (grays[v].red != ScaleQuantumToMap(GetPixelRed(image,p+offset*GetPixelChannels(image))))
949  v++;
950  cooccurrence[u][v].direction[i].red++;
951  cooccurrence[v][u].direction[i].red++;
952  u=0;
953  v=0;
954  while (grays[u].green != ScaleQuantumToMap(GetPixelGreen(image,p)))
955  u++;
956  while (grays[v].green != ScaleQuantumToMap(GetPixelGreen(image,p+offset*GetPixelChannels(image))))
957  v++;
958  cooccurrence[u][v].direction[i].green++;
959  cooccurrence[v][u].direction[i].green++;
960  u=0;
961  v=0;
962  while (grays[u].blue != ScaleQuantumToMap(GetPixelBlue(image,p)))
963  u++;
964  while (grays[v].blue != ScaleQuantumToMap(GetPixelBlue(image,p+offset*GetPixelChannels(image))))
965  v++;
966  cooccurrence[u][v].direction[i].blue++;
967  cooccurrence[v][u].direction[i].blue++;
968  if (image->colorspace == CMYKColorspace)
969  {
970  u=0;
971  v=0;
972  while (grays[u].black != ScaleQuantumToMap(GetPixelBlack(image,p)))
973  u++;
974  while (grays[v].black != ScaleQuantumToMap(GetPixelBlack(image,p+offset*GetPixelChannels(image))))
975  v++;
976  cooccurrence[u][v].direction[i].black++;
977  cooccurrence[v][u].direction[i].black++;
978  }
979  if (image->alpha_trait != UndefinedPixelTrait)
980  {
981  u=0;
982  v=0;
983  while (grays[u].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p)))
984  u++;
985  while (grays[v].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p+offset*GetPixelChannels(image))))
986  v++;
987  cooccurrence[u][v].direction[i].alpha++;
988  cooccurrence[v][u].direction[i].alpha++;
989  }
990  }
991  p+=GetPixelChannels(image);
992  }
993  }
994  grays=(PixelPacket *) RelinquishMagickMemory(grays);
995  image_view=DestroyCacheView(image_view);
996  if (status == MagickFalse)
997  {
998  for (i=0; i < (ssize_t) number_grays; i++)
999  cooccurrence[i]=(ChannelStatistics *)
1000  RelinquishMagickMemory(cooccurrence[i]);
1001  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
1002  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
1003  channel_features);
1004  (void) ThrowMagickException(exception,GetMagickModule(),
1005  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
1006  return(channel_features);
1007  }
1008  /*
1009  Normalize spatial dependence matrix.
1010  */
1011  for (i=0; i < 4; i++)
1012  {
1013  double
1014  normalize;
1015 
1016  register ssize_t
1017  y;
1018 
1019  switch (i)
1020  {
1021  case 0:
1022  default:
1023  {
1024  /*
1025  Horizontal adjacency.
1026  */
1027  normalize=2.0*image->rows*(image->columns-distance);
1028  break;
1029  }
1030  case 1:
1031  {
1032  /*
1033  Vertical adjacency.
1034  */
1035  normalize=2.0*(image->rows-distance)*image->columns;
1036  break;
1037  }
1038  case 2:
1039  {
1040  /*
1041  Right diagonal adjacency.
1042  */
1043  normalize=2.0*(image->rows-distance)*(image->columns-distance);
1044  break;
1045  }
1046  case 3:
1047  {
1048  /*
1049  Left diagonal adjacency.
1050  */
1051  normalize=2.0*(image->rows-distance)*(image->columns-distance);
1052  break;
1053  }
1054  }
1055  normalize=PerceptibleReciprocal(normalize);
1056  for (y=0; y < (ssize_t) number_grays; y++)
1057  {
1058  register ssize_t
1059  x;
1060 
1061  for (x=0; x < (ssize_t) number_grays; x++)
1062  {
1063  cooccurrence[x][y].direction[i].red*=normalize;
1064  cooccurrence[x][y].direction[i].green*=normalize;
1065  cooccurrence[x][y].direction[i].blue*=normalize;
1066  if (image->colorspace == CMYKColorspace)
1067  cooccurrence[x][y].direction[i].black*=normalize;
1068  if (image->alpha_trait != UndefinedPixelTrait)
1069  cooccurrence[x][y].direction[i].alpha*=normalize;
1070  }
1071  }
1072  }
1073  /*
1074  Compute texture features.
1075  */
1076 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1077  #pragma omp parallel for schedule(static,4) shared(status) \
1078  magick_number_threads(image,image,number_grays,1)
1079 #endif
1080  for (i=0; i < 4; i++)
1081  {
1082  register ssize_t
1083  y;
1084 
1085  for (y=0; y < (ssize_t) number_grays; y++)
1086  {
1087  register ssize_t
1088  x;
1089 
1090  for (x=0; x < (ssize_t) number_grays; x++)
1091  {
1092  /*
1093  Angular second moment: measure of homogeneity of the image.
1094  */
1095  channel_features[RedPixelChannel].angular_second_moment[i]+=
1096  cooccurrence[x][y].direction[i].red*
1097  cooccurrence[x][y].direction[i].red;
1098  channel_features[GreenPixelChannel].angular_second_moment[i]+=
1099  cooccurrence[x][y].direction[i].green*
1100  cooccurrence[x][y].direction[i].green;
1101  channel_features[BluePixelChannel].angular_second_moment[i]+=
1102  cooccurrence[x][y].direction[i].blue*
1103  cooccurrence[x][y].direction[i].blue;
1104  if (image->colorspace == CMYKColorspace)
1105  channel_features[BlackPixelChannel].angular_second_moment[i]+=
1106  cooccurrence[x][y].direction[i].black*
1107  cooccurrence[x][y].direction[i].black;
1108  if (image->alpha_trait != UndefinedPixelTrait)
1109  channel_features[AlphaPixelChannel].angular_second_moment[i]+=
1110  cooccurrence[x][y].direction[i].alpha*
1111  cooccurrence[x][y].direction[i].alpha;
1112  /*
1113  Correlation: measure of linear-dependencies in the image.
1114  */
1115  sum[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
1116  sum[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
1117  sum[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1118  if (image->colorspace == CMYKColorspace)
1119  sum[y].direction[i].black+=cooccurrence[x][y].direction[i].black;
1120  if (image->alpha_trait != UndefinedPixelTrait)
1121  sum[y].direction[i].alpha+=cooccurrence[x][y].direction[i].alpha;
1122  correlation.direction[i].red+=x*y*cooccurrence[x][y].direction[i].red;
1123  correlation.direction[i].green+=x*y*
1124  cooccurrence[x][y].direction[i].green;
1125  correlation.direction[i].blue+=x*y*
1126  cooccurrence[x][y].direction[i].blue;
1127  if (image->colorspace == CMYKColorspace)
1128  correlation.direction[i].black+=x*y*
1129  cooccurrence[x][y].direction[i].black;
1130  if (image->alpha_trait != UndefinedPixelTrait)
1131  correlation.direction[i].alpha+=x*y*
1132  cooccurrence[x][y].direction[i].alpha;
1133  /*
1134  Inverse Difference Moment.
1135  */
1136  channel_features[RedPixelChannel].inverse_difference_moment[i]+=
1137  cooccurrence[x][y].direction[i].red/((y-x)*(y-x)+1);
1138  channel_features[GreenPixelChannel].inverse_difference_moment[i]+=
1139  cooccurrence[x][y].direction[i].green/((y-x)*(y-x)+1);
1140  channel_features[BluePixelChannel].inverse_difference_moment[i]+=
1141  cooccurrence[x][y].direction[i].blue/((y-x)*(y-x)+1);
1142  if (image->colorspace == CMYKColorspace)
1143  channel_features[BlackPixelChannel].inverse_difference_moment[i]+=
1144  cooccurrence[x][y].direction[i].black/((y-x)*(y-x)+1);
1145  if (image->alpha_trait != UndefinedPixelTrait)
1146  channel_features[AlphaPixelChannel].inverse_difference_moment[i]+=
1147  cooccurrence[x][y].direction[i].alpha/((y-x)*(y-x)+1);
1148  /*
1149  Sum average.
1150  */
1151  density_xy[y+x+2].direction[i].red+=
1152  cooccurrence[x][y].direction[i].red;
1153  density_xy[y+x+2].direction[i].green+=
1154  cooccurrence[x][y].direction[i].green;
1155  density_xy[y+x+2].direction[i].blue+=
1156  cooccurrence[x][y].direction[i].blue;
1157  if (image->colorspace == CMYKColorspace)
1158  density_xy[y+x+2].direction[i].black+=
1159  cooccurrence[x][y].direction[i].black;
1160  if (image->alpha_trait != UndefinedPixelTrait)
1161  density_xy[y+x+2].direction[i].alpha+=
1162  cooccurrence[x][y].direction[i].alpha;
1163  /*
1164  Entropy.
1165  */
1166  channel_features[RedPixelChannel].entropy[i]-=
1167  cooccurrence[x][y].direction[i].red*
1168  MagickLog10(cooccurrence[x][y].direction[i].red);
1169  channel_features[GreenPixelChannel].entropy[i]-=
1170  cooccurrence[x][y].direction[i].green*
1171  MagickLog10(cooccurrence[x][y].direction[i].green);
1172  channel_features[BluePixelChannel].entropy[i]-=
1173  cooccurrence[x][y].direction[i].blue*
1174  MagickLog10(cooccurrence[x][y].direction[i].blue);
1175  if (image->colorspace == CMYKColorspace)
1176  channel_features[BlackPixelChannel].entropy[i]-=
1177  cooccurrence[x][y].direction[i].black*
1178  MagickLog10(cooccurrence[x][y].direction[i].black);
1179  if (image->alpha_trait != UndefinedPixelTrait)
1180  channel_features[AlphaPixelChannel].entropy[i]-=
1181  cooccurrence[x][y].direction[i].alpha*
1182  MagickLog10(cooccurrence[x][y].direction[i].alpha);
1183  /*
1184  Information Measures of Correlation.
1185  */
1186  density_x[x].direction[i].red+=cooccurrence[x][y].direction[i].red;
1187  density_x[x].direction[i].green+=cooccurrence[x][y].direction[i].green;
1188  density_x[x].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1189  if (image->alpha_trait != UndefinedPixelTrait)
1190  density_x[x].direction[i].alpha+=
1191  cooccurrence[x][y].direction[i].alpha;
1192  if (image->colorspace == CMYKColorspace)
1193  density_x[x].direction[i].black+=
1194  cooccurrence[x][y].direction[i].black;
1195  density_y[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
1196  density_y[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
1197  density_y[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1198  if (image->colorspace == CMYKColorspace)
1199  density_y[y].direction[i].black+=
1200  cooccurrence[x][y].direction[i].black;
1201  if (image->alpha_trait != UndefinedPixelTrait)
1202  density_y[y].direction[i].alpha+=
1203  cooccurrence[x][y].direction[i].alpha;
1204  }
1205  mean.direction[i].red+=y*sum[y].direction[i].red;
1206  sum_squares.direction[i].red+=y*y*sum[y].direction[i].red;
1207  mean.direction[i].green+=y*sum[y].direction[i].green;
1208  sum_squares.direction[i].green+=y*y*sum[y].direction[i].green;
1209  mean.direction[i].blue+=y*sum[y].direction[i].blue;
1210  sum_squares.direction[i].blue+=y*y*sum[y].direction[i].blue;
1211  if (image->colorspace == CMYKColorspace)
1212  {
1213  mean.direction[i].black+=y*sum[y].direction[i].black;
1214  sum_squares.direction[i].black+=y*y*sum[y].direction[i].black;
1215  }
1216  if (image->alpha_trait != UndefinedPixelTrait)
1217  {
1218  mean.direction[i].alpha+=y*sum[y].direction[i].alpha;
1219  sum_squares.direction[i].alpha+=y*y*sum[y].direction[i].alpha;
1220  }
1221  }
1222  /*
1223  Correlation: measure of linear-dependencies in the image.
1224  */
1225  channel_features[RedPixelChannel].correlation[i]=
1226  (correlation.direction[i].red-mean.direction[i].red*
1227  mean.direction[i].red)/(sqrt(sum_squares.direction[i].red-
1228  (mean.direction[i].red*mean.direction[i].red))*sqrt(
1229  sum_squares.direction[i].red-(mean.direction[i].red*
1230  mean.direction[i].red)));
1231  channel_features[GreenPixelChannel].correlation[i]=
1232  (correlation.direction[i].green-mean.direction[i].green*
1233  mean.direction[i].green)/(sqrt(sum_squares.direction[i].green-
1234  (mean.direction[i].green*mean.direction[i].green))*sqrt(
1235  sum_squares.direction[i].green-(mean.direction[i].green*
1236  mean.direction[i].green)));
1237  channel_features[BluePixelChannel].correlation[i]=
1238  (correlation.direction[i].blue-mean.direction[i].blue*
1239  mean.direction[i].blue)/(sqrt(sum_squares.direction[i].blue-
1240  (mean.direction[i].blue*mean.direction[i].blue))*sqrt(
1241  sum_squares.direction[i].blue-(mean.direction[i].blue*
1242  mean.direction[i].blue)));
1243  if (image->colorspace == CMYKColorspace)
1244  channel_features[BlackPixelChannel].correlation[i]=
1245  (correlation.direction[i].black-mean.direction[i].black*
1246  mean.direction[i].black)/(sqrt(sum_squares.direction[i].black-
1247  (mean.direction[i].black*mean.direction[i].black))*sqrt(
1248  sum_squares.direction[i].black-(mean.direction[i].black*
1249  mean.direction[i].black)));
1250  if (image->alpha_trait != UndefinedPixelTrait)
1251  channel_features[AlphaPixelChannel].correlation[i]=
1252  (correlation.direction[i].alpha-mean.direction[i].alpha*
1253  mean.direction[i].alpha)/(sqrt(sum_squares.direction[i].alpha-
1254  (mean.direction[i].alpha*mean.direction[i].alpha))*sqrt(
1255  sum_squares.direction[i].alpha-(mean.direction[i].alpha*
1256  mean.direction[i].alpha)));
1257  }
1258  /*
1259  Compute more texture features.
1260  */
1261 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1262  #pragma omp parallel for schedule(static,4) shared(status) \
1263  magick_number_threads(image,image,number_grays,1)
1264 #endif
1265  for (i=0; i < 4; i++)
1266  {
1267  register ssize_t
1268  x;
1269 
1270  for (x=2; x < (ssize_t) (2*number_grays); x++)
1271  {
1272  /*
1273  Sum average.
1274  */
1275  channel_features[RedPixelChannel].sum_average[i]+=
1276  x*density_xy[x].direction[i].red;
1277  channel_features[GreenPixelChannel].sum_average[i]+=
1278  x*density_xy[x].direction[i].green;
1279  channel_features[BluePixelChannel].sum_average[i]+=
1280  x*density_xy[x].direction[i].blue;
1281  if (image->colorspace == CMYKColorspace)
1282  channel_features[BlackPixelChannel].sum_average[i]+=
1283  x*density_xy[x].direction[i].black;
1284  if (image->alpha_trait != UndefinedPixelTrait)
1285  channel_features[AlphaPixelChannel].sum_average[i]+=
1286  x*density_xy[x].direction[i].alpha;
1287  /*
1288  Sum entropy.
1289  */
1290  channel_features[RedPixelChannel].sum_entropy[i]-=
1291  density_xy[x].direction[i].red*
1292  MagickLog10(density_xy[x].direction[i].red);
1293  channel_features[GreenPixelChannel].sum_entropy[i]-=
1294  density_xy[x].direction[i].green*
1295  MagickLog10(density_xy[x].direction[i].green);
1296  channel_features[BluePixelChannel].sum_entropy[i]-=
1297  density_xy[x].direction[i].blue*
1298  MagickLog10(density_xy[x].direction[i].blue);
1299  if (image->colorspace == CMYKColorspace)
1300  channel_features[BlackPixelChannel].sum_entropy[i]-=
1301  density_xy[x].direction[i].black*
1302  MagickLog10(density_xy[x].direction[i].black);
1303  if (image->alpha_trait != UndefinedPixelTrait)
1304  channel_features[AlphaPixelChannel].sum_entropy[i]-=
1305  density_xy[x].direction[i].alpha*
1306  MagickLog10(density_xy[x].direction[i].alpha);
1307  /*
1308  Sum variance.
1309  */
1310  channel_features[RedPixelChannel].sum_variance[i]+=
1311  (x-channel_features[RedPixelChannel].sum_entropy[i])*
1312  (x-channel_features[RedPixelChannel].sum_entropy[i])*
1313  density_xy[x].direction[i].red;
1314  channel_features[GreenPixelChannel].sum_variance[i]+=
1315  (x-channel_features[GreenPixelChannel].sum_entropy[i])*
1316  (x-channel_features[GreenPixelChannel].sum_entropy[i])*
1317  density_xy[x].direction[i].green;
1318  channel_features[BluePixelChannel].sum_variance[i]+=
1319  (x-channel_features[BluePixelChannel].sum_entropy[i])*
1320  (x-channel_features[BluePixelChannel].sum_entropy[i])*
1321  density_xy[x].direction[i].blue;
1322  if (image->colorspace == CMYKColorspace)
1323  channel_features[BlackPixelChannel].sum_variance[i]+=
1324  (x-channel_features[BlackPixelChannel].sum_entropy[i])*
1325  (x-channel_features[BlackPixelChannel].sum_entropy[i])*
1326  density_xy[x].direction[i].black;
1327  if (image->alpha_trait != UndefinedPixelTrait)
1328  channel_features[AlphaPixelChannel].sum_variance[i]+=
1329  (x-channel_features[AlphaPixelChannel].sum_entropy[i])*
1330  (x-channel_features[AlphaPixelChannel].sum_entropy[i])*
1331  density_xy[x].direction[i].alpha;
1332  }
1333  }
1334  /*
1335  Compute more texture features.
1336  */
1337 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1338  #pragma omp parallel for schedule(static,4) shared(status) \
1339  magick_number_threads(image,image,number_grays,1)
1340 #endif
1341  for (i=0; i < 4; i++)
1342  {
1343  register ssize_t
1344  y;
1345 
1346  for (y=0; y < (ssize_t) number_grays; y++)
1347  {
1348  register ssize_t
1349  x;
1350 
1351  for (x=0; x < (ssize_t) number_grays; x++)
1352  {
1353  /*
1354  Sum of Squares: Variance
1355  */
1356  variance.direction[i].red+=(y-mean.direction[i].red+1)*
1357  (y-mean.direction[i].red+1)*cooccurrence[x][y].direction[i].red;
1358  variance.direction[i].green+=(y-mean.direction[i].green+1)*
1359  (y-mean.direction[i].green+1)*cooccurrence[x][y].direction[i].green;
1360  variance.direction[i].blue+=(y-mean.direction[i].blue+1)*
1361  (y-mean.direction[i].blue+1)*cooccurrence[x][y].direction[i].blue;
1362  if (image->colorspace == CMYKColorspace)
1363  variance.direction[i].black+=(y-mean.direction[i].black+1)*
1364  (y-mean.direction[i].black+1)*cooccurrence[x][y].direction[i].black;
1365  if (image->alpha_trait != UndefinedPixelTrait)
1366  variance.direction[i].alpha+=(y-mean.direction[i].alpha+1)*
1367  (y-mean.direction[i].alpha+1)*
1368  cooccurrence[x][y].direction[i].alpha;
1369  /*
1370  Sum average / Difference Variance.
1371  */
1372  density_xy[MagickAbsoluteValue(y-x)].direction[i].red+=
1373  cooccurrence[x][y].direction[i].red;
1374  density_xy[MagickAbsoluteValue(y-x)].direction[i].green+=
1375  cooccurrence[x][y].direction[i].green;
1376  density_xy[MagickAbsoluteValue(y-x)].direction[i].blue+=
1377  cooccurrence[x][y].direction[i].blue;
1378  if (image->colorspace == CMYKColorspace)
1379  density_xy[MagickAbsoluteValue(y-x)].direction[i].black+=
1380  cooccurrence[x][y].direction[i].black;
1381  if (image->alpha_trait != UndefinedPixelTrait)
1382  density_xy[MagickAbsoluteValue(y-x)].direction[i].alpha+=
1383  cooccurrence[x][y].direction[i].alpha;
1384  /*
1385  Information Measures of Correlation.
1386  */
1387  entropy_xy.direction[i].red-=cooccurrence[x][y].direction[i].red*
1388  MagickLog10(cooccurrence[x][y].direction[i].red);
1389  entropy_xy.direction[i].green-=cooccurrence[x][y].direction[i].green*
1390  MagickLog10(cooccurrence[x][y].direction[i].green);
1391  entropy_xy.direction[i].blue-=cooccurrence[x][y].direction[i].blue*
1392  MagickLog10(cooccurrence[x][y].direction[i].blue);
1393  if (image->colorspace == CMYKColorspace)
1394  entropy_xy.direction[i].black-=cooccurrence[x][y].direction[i].black*
1395  MagickLog10(cooccurrence[x][y].direction[i].black);
1396  if (image->alpha_trait != UndefinedPixelTrait)
1397  entropy_xy.direction[i].alpha-=
1398  cooccurrence[x][y].direction[i].alpha*MagickLog10(
1399  cooccurrence[x][y].direction[i].alpha);
1400  entropy_xy1.direction[i].red-=(cooccurrence[x][y].direction[i].red*
1401  MagickLog10(density_x[x].direction[i].red*density_y[y].direction[i].red));
1402  entropy_xy1.direction[i].green-=(cooccurrence[x][y].direction[i].green*
1403  MagickLog10(density_x[x].direction[i].green*
1404  density_y[y].direction[i].green));
1405  entropy_xy1.direction[i].blue-=(cooccurrence[x][y].direction[i].blue*
1406  MagickLog10(density_x[x].direction[i].blue*density_y[y].direction[i].blue));
1407  if (image->colorspace == CMYKColorspace)
1408  entropy_xy1.direction[i].black-=(
1409  cooccurrence[x][y].direction[i].black*MagickLog10(
1410  density_x[x].direction[i].black*density_y[y].direction[i].black));
1411  if (image->alpha_trait != UndefinedPixelTrait)
1412  entropy_xy1.direction[i].alpha-=(
1413  cooccurrence[x][y].direction[i].alpha*MagickLog10(
1414  density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
1415  entropy_xy2.direction[i].red-=(density_x[x].direction[i].red*
1416  density_y[y].direction[i].red*MagickLog10(density_x[x].direction[i].red*
1417  density_y[y].direction[i].red));
1418  entropy_xy2.direction[i].green-=(density_x[x].direction[i].green*
1419  density_y[y].direction[i].green*MagickLog10(density_x[x].direction[i].green*
1420  density_y[y].direction[i].green));
1421  entropy_xy2.direction[i].blue-=(density_x[x].direction[i].blue*
1422  density_y[y].direction[i].blue*MagickLog10(density_x[x].direction[i].blue*
1423  density_y[y].direction[i].blue));
1424  if (image->colorspace == CMYKColorspace)
1425  entropy_xy2.direction[i].black-=(density_x[x].direction[i].black*
1426  density_y[y].direction[i].black*MagickLog10(
1427  density_x[x].direction[i].black*density_y[y].direction[i].black));
1428  if (image->alpha_trait != UndefinedPixelTrait)
1429  entropy_xy2.direction[i].alpha-=(density_x[x].direction[i].alpha*
1430  density_y[y].direction[i].alpha*MagickLog10(
1431  density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
1432  }
1433  }
1434  channel_features[RedPixelChannel].variance_sum_of_squares[i]=
1435  variance.direction[i].red;
1436  channel_features[GreenPixelChannel].variance_sum_of_squares[i]=
1437  variance.direction[i].green;
1438  channel_features[BluePixelChannel].variance_sum_of_squares[i]=
1439  variance.direction[i].blue;
1440  if (image->colorspace == CMYKColorspace)
1441  channel_features[BlackPixelChannel].variance_sum_of_squares[i]=
1442  variance.direction[i].black;
1443  if (image->alpha_trait != UndefinedPixelTrait)
1444  channel_features[AlphaPixelChannel].variance_sum_of_squares[i]=
1445  variance.direction[i].alpha;
1446  }
1447  /*
1448  Compute more texture features.
1449  */
1450  (void) ResetMagickMemory(&variance,0,sizeof(variance));
1451  (void) ResetMagickMemory(&sum_squares,0,sizeof(sum_squares));
1452 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1453  #pragma omp parallel for schedule(static,4) shared(status) \
1454  magick_number_threads(image,image,number_grays,1)
1455 #endif
1456  for (i=0; i < 4; i++)
1457  {
1458  register ssize_t
1459  x;
1460 
1461  for (x=0; x < (ssize_t) number_grays; x++)
1462  {
1463  /*
1464  Difference variance.
1465  */
1466  variance.direction[i].red+=density_xy[x].direction[i].red;
1467  variance.direction[i].green+=density_xy[x].direction[i].green;
1468  variance.direction[i].blue+=density_xy[x].direction[i].blue;
1469  if (image->colorspace == CMYKColorspace)
1470  variance.direction[i].black+=density_xy[x].direction[i].black;
1471  if (image->alpha_trait != UndefinedPixelTrait)
1472  variance.direction[i].alpha+=density_xy[x].direction[i].alpha;
1473  sum_squares.direction[i].red+=density_xy[x].direction[i].red*
1474  density_xy[x].direction[i].red;
1475  sum_squares.direction[i].green+=density_xy[x].direction[i].green*
1476  density_xy[x].direction[i].green;
1477  sum_squares.direction[i].blue+=density_xy[x].direction[i].blue*
1478  density_xy[x].direction[i].blue;
1479  if (image->colorspace == CMYKColorspace)
1480  sum_squares.direction[i].black+=density_xy[x].direction[i].black*
1481  density_xy[x].direction[i].black;
1482  if (image->alpha_trait != UndefinedPixelTrait)
1483  sum_squares.direction[i].alpha+=density_xy[x].direction[i].alpha*
1484  density_xy[x].direction[i].alpha;
1485  /*
1486  Difference entropy.
1487  */
1488  channel_features[RedPixelChannel].difference_entropy[i]-=
1489  density_xy[x].direction[i].red*
1490  MagickLog10(density_xy[x].direction[i].red);
1491  channel_features[GreenPixelChannel].difference_entropy[i]-=
1492  density_xy[x].direction[i].green*
1493  MagickLog10(density_xy[x].direction[i].green);
1494  channel_features[BluePixelChannel].difference_entropy[i]-=
1495  density_xy[x].direction[i].blue*
1496  MagickLog10(density_xy[x].direction[i].blue);
1497  if (image->colorspace == CMYKColorspace)
1498  channel_features[BlackPixelChannel].difference_entropy[i]-=
1499  density_xy[x].direction[i].black*
1500  MagickLog10(density_xy[x].direction[i].black);
1501  if (image->alpha_trait != UndefinedPixelTrait)
1502  channel_features[AlphaPixelChannel].difference_entropy[i]-=
1503  density_xy[x].direction[i].alpha*
1504  MagickLog10(density_xy[x].direction[i].alpha);
1505  /*
1506  Information Measures of Correlation.
1507  */
1508  entropy_x.direction[i].red-=(density_x[x].direction[i].red*
1509  MagickLog10(density_x[x].direction[i].red));
1510  entropy_x.direction[i].green-=(density_x[x].direction[i].green*
1511  MagickLog10(density_x[x].direction[i].green));
1512  entropy_x.direction[i].blue-=(density_x[x].direction[i].blue*
1513  MagickLog10(density_x[x].direction[i].blue));
1514  if (image->colorspace == CMYKColorspace)
1515  entropy_x.direction[i].black-=(density_x[x].direction[i].black*
1516  MagickLog10(density_x[x].direction[i].black));
1517  if (image->alpha_trait != UndefinedPixelTrait)
1518  entropy_x.direction[i].alpha-=(density_x[x].direction[i].alpha*
1519  MagickLog10(density_x[x].direction[i].alpha));
1520  entropy_y.direction[i].red-=(density_y[x].direction[i].red*
1521  MagickLog10(density_y[x].direction[i].red));
1522  entropy_y.direction[i].green-=(density_y[x].direction[i].green*
1523  MagickLog10(density_y[x].direction[i].green));
1524  entropy_y.direction[i].blue-=(density_y[x].direction[i].blue*
1525  MagickLog10(density_y[x].direction[i].blue));
1526  if (image->colorspace == CMYKColorspace)
1527  entropy_y.direction[i].black-=(density_y[x].direction[i].black*
1528  MagickLog10(density_y[x].direction[i].black));
1529  if (image->alpha_trait != UndefinedPixelTrait)
1530  entropy_y.direction[i].alpha-=(density_y[x].direction[i].alpha*
1531  MagickLog10(density_y[x].direction[i].alpha));
1532  }
1533  /*
1534  Difference variance.
1535  */
1536  channel_features[RedPixelChannel].difference_variance[i]=
1537  (((double) number_grays*number_grays*sum_squares.direction[i].red)-
1538  (variance.direction[i].red*variance.direction[i].red))/
1539  ((double) number_grays*number_grays*number_grays*number_grays);
1540  channel_features[GreenPixelChannel].difference_variance[i]=
1541  (((double) number_grays*number_grays*sum_squares.direction[i].green)-
1542  (variance.direction[i].green*variance.direction[i].green))/
1543  ((double) number_grays*number_grays*number_grays*number_grays);
1544  channel_features[BluePixelChannel].difference_variance[i]=
1545  (((double) number_grays*number_grays*sum_squares.direction[i].blue)-
1546  (variance.direction[i].blue*variance.direction[i].blue))/
1547  ((double) number_grays*number_grays*number_grays*number_grays);
1548  if (image->colorspace == CMYKColorspace)
1549  channel_features[BlackPixelChannel].difference_variance[i]=
1550  (((double) number_grays*number_grays*sum_squares.direction[i].black)-
1551  (variance.direction[i].black*variance.direction[i].black))/
1552  ((double) number_grays*number_grays*number_grays*number_grays);
1553  if (image->alpha_trait != UndefinedPixelTrait)
1554  channel_features[AlphaPixelChannel].difference_variance[i]=
1555  (((double) number_grays*number_grays*sum_squares.direction[i].alpha)-
1556  (variance.direction[i].alpha*variance.direction[i].alpha))/
1557  ((double) number_grays*number_grays*number_grays*number_grays);
1558  /*
1559  Information Measures of Correlation.
1560  */
1561  channel_features[RedPixelChannel].measure_of_correlation_1[i]=
1562  (entropy_xy.direction[i].red-entropy_xy1.direction[i].red)/
1563  (entropy_x.direction[i].red > entropy_y.direction[i].red ?
1564  entropy_x.direction[i].red : entropy_y.direction[i].red);
1565  channel_features[GreenPixelChannel].measure_of_correlation_1[i]=
1566  (entropy_xy.direction[i].green-entropy_xy1.direction[i].green)/
1567  (entropy_x.direction[i].green > entropy_y.direction[i].green ?
1568  entropy_x.direction[i].green : entropy_y.direction[i].green);
1569  channel_features[BluePixelChannel].measure_of_correlation_1[i]=
1570  (entropy_xy.direction[i].blue-entropy_xy1.direction[i].blue)/
1571  (entropy_x.direction[i].blue > entropy_y.direction[i].blue ?
1572  entropy_x.direction[i].blue : entropy_y.direction[i].blue);
1573  if (image->colorspace == CMYKColorspace)
1574  channel_features[BlackPixelChannel].measure_of_correlation_1[i]=
1575  (entropy_xy.direction[i].black-entropy_xy1.direction[i].black)/
1576  (entropy_x.direction[i].black > entropy_y.direction[i].black ?
1577  entropy_x.direction[i].black : entropy_y.direction[i].black);
1578  if (image->alpha_trait != UndefinedPixelTrait)
1579  channel_features[AlphaPixelChannel].measure_of_correlation_1[i]=
1580  (entropy_xy.direction[i].alpha-entropy_xy1.direction[i].alpha)/
1581  (entropy_x.direction[i].alpha > entropy_y.direction[i].alpha ?
1582  entropy_x.direction[i].alpha : entropy_y.direction[i].alpha);
1583  channel_features[RedPixelChannel].measure_of_correlation_2[i]=
1584  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].red-
1585  entropy_xy.direction[i].red)))));
1586  channel_features[GreenPixelChannel].measure_of_correlation_2[i]=
1587  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].green-
1588  entropy_xy.direction[i].green)))));
1589  channel_features[BluePixelChannel].measure_of_correlation_2[i]=
1590  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].blue-
1591  entropy_xy.direction[i].blue)))));
1592  if (image->colorspace == CMYKColorspace)
1593  channel_features[BlackPixelChannel].measure_of_correlation_2[i]=
1594  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].black-
1595  entropy_xy.direction[i].black)))));
1596  if (image->alpha_trait != UndefinedPixelTrait)
1597  channel_features[AlphaPixelChannel].measure_of_correlation_2[i]=
1598  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].alpha-
1599  entropy_xy.direction[i].alpha)))));
1600  }
1601  /*
1602  Compute more texture features.
1603  */
1604 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1605  #pragma omp parallel for schedule(static,4) shared(status) \
1606  magick_number_threads(image,image,number_grays,1)
1607 #endif
1608  for (i=0; i < 4; i++)
1609  {
1610  ssize_t
1611  z;
1612 
1613  for (z=0; z < (ssize_t) number_grays; z++)
1614  {
1615  register ssize_t
1616  y;
1617 
1619  pixel;
1620 
1621  (void) ResetMagickMemory(&pixel,0,sizeof(pixel));
1622  for (y=0; y < (ssize_t) number_grays; y++)
1623  {
1624  register ssize_t
1625  x;
1626 
1627  for (x=0; x < (ssize_t) number_grays; x++)
1628  {
1629  /*
1630  Contrast: amount of local variations present in an image.
1631  */
1632  if (((y-x) == z) || ((x-y) == z))
1633  {
1634  pixel.direction[i].red+=cooccurrence[x][y].direction[i].red;
1635  pixel.direction[i].green+=cooccurrence[x][y].direction[i].green;
1636  pixel.direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1637  if (image->colorspace == CMYKColorspace)
1638  pixel.direction[i].black+=cooccurrence[x][y].direction[i].black;
1639  if (image->alpha_trait != UndefinedPixelTrait)
1640  pixel.direction[i].alpha+=
1641  cooccurrence[x][y].direction[i].alpha;
1642  }
1643  /*
1644  Maximum Correlation Coefficient.
1645  */
1646  Q[z][y].direction[i].red+=cooccurrence[z][x].direction[i].red*
1647  cooccurrence[y][x].direction[i].red/density_x[z].direction[i].red/
1648  density_y[x].direction[i].red;
1649  Q[z][y].direction[i].green+=cooccurrence[z][x].direction[i].green*
1650  cooccurrence[y][x].direction[i].green/
1651  density_x[z].direction[i].green/density_y[x].direction[i].red;
1652  Q[z][y].direction[i].blue+=cooccurrence[z][x].direction[i].blue*
1653  cooccurrence[y][x].direction[i].blue/density_x[z].direction[i].blue/
1654  density_y[x].direction[i].blue;
1655  if (image->colorspace == CMYKColorspace)
1656  Q[z][y].direction[i].black+=cooccurrence[z][x].direction[i].black*
1657  cooccurrence[y][x].direction[i].black/
1658  density_x[z].direction[i].black/density_y[x].direction[i].black;
1659  if (image->alpha_trait != UndefinedPixelTrait)
1660  Q[z][y].direction[i].alpha+=
1661  cooccurrence[z][x].direction[i].alpha*
1662  cooccurrence[y][x].direction[i].alpha/
1663  density_x[z].direction[i].alpha/
1664  density_y[x].direction[i].alpha;
1665  }
1666  }
1667  channel_features[RedPixelChannel].contrast[i]+=z*z*
1668  pixel.direction[i].red;
1669  channel_features[GreenPixelChannel].contrast[i]+=z*z*
1670  pixel.direction[i].green;
1671  channel_features[BluePixelChannel].contrast[i]+=z*z*
1672  pixel.direction[i].blue;
1673  if (image->colorspace == CMYKColorspace)
1674  channel_features[BlackPixelChannel].contrast[i]+=z*z*
1675  pixel.direction[i].black;
1676  if (image->alpha_trait != UndefinedPixelTrait)
1677  channel_features[AlphaPixelChannel].contrast[i]+=z*z*
1678  pixel.direction[i].alpha;
1679  }
1680  /*
1681  Maximum Correlation Coefficient.
1682  Future: return second largest eigenvalue of Q.
1683  */
1684  channel_features[RedPixelChannel].maximum_correlation_coefficient[i]=
1685  sqrt((double) -1.0);
1687  sqrt((double) -1.0);
1689  sqrt((double) -1.0);
1690  if (image->colorspace == CMYKColorspace)
1692  sqrt((double) -1.0);
1693  if (image->alpha_trait != UndefinedPixelTrait)
1695  sqrt((double) -1.0);
1696  }
1697  /*
1698  Relinquish resources.
1699  */
1701  for (i=0; i < (ssize_t) number_grays; i++)
1704  density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
1705  density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
1706  density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
1707  for (i=0; i < (ssize_t) number_grays; i++)
1708  cooccurrence[i]=(ChannelStatistics *)
1709  RelinquishMagickMemory(cooccurrence[i]);
1710  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
1711  return(channel_features);
1712 }
1713 
1714 /*
1715 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1716 % %
1717 % %
1718 % %
1719 % H o u g h L i n e I m a g e %
1720 % %
1721 % %
1722 % %
1723 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1724 %
1725 % Use HoughLineImage() in conjunction with any binary edge extracted image (we
1726 % recommand Canny) to identify lines in the image. The algorithm accumulates
1727 % counts for every white pixel for every possible orientation (for angles from
1728 % 0 to 179 in 1 degree increments) and distance from the center of the image to
1729 % the corner (in 1 px increments) and stores the counts in an accumulator matrix
1730 % of angle vs distance. The size of the accumulator is 180x(diagonal/2). Next
1731 % it searches this space for peaks in counts and converts the locations of the
1732 % peaks to slope and intercept in the normal x,y input image space. Use the
1733 % slope/intercepts to find the endpoints clipped to the bounds of the image. The
1734 % lines are then drawn. The counts are a measure of the length of the lines
1735 %
1736 % The format of the HoughLineImage method is:
1737 %
1738 % Image *HoughLineImage(const Image *image,const size_t width,
1739 % const size_t height,const size_t threshold,ExceptionInfo *exception)
1740 %
1741 % A description of each parameter follows:
1742 %
1743 % o image: the image.
1744 %
1745 % o width, height: find line pairs as local maxima in this neighborhood.
1746 %
1747 % o threshold: the line count threshold.
1748 %
1749 % o exception: return any errors or warnings in this structure.
1750 %
1751 */
1752 
1753 static inline double MagickRound(double x)
1754 {
1755  /*
1756  Round the fraction to nearest integer.
1757  */
1758  if ((x-floor(x)) < (ceil(x)-x))
1759  return(floor(x));
1760  return(ceil(x));
1761 }
1762 
1763 static Image *RenderHoughLines(const ImageInfo *image_info,const size_t columns,
1764  const size_t rows,ExceptionInfo *exception)
1765 {
1766 #define BoundingBox "viewbox"
1767 
1768  DrawInfo
1769  *draw_info;
1770 
1771  Image
1772  *image;
1773 
1775  status;
1776 
1777  /*
1778  Open image.
1779  */
1780  image=AcquireImage(image_info,exception);
1781  status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
1782  if (status == MagickFalse)
1783  {
1784  image=DestroyImageList(image);
1785  return((Image *) NULL);
1786  }
1787  image->columns=columns;
1788  image->rows=rows;
1789  draw_info=CloneDrawInfo(image_info,(DrawInfo *) NULL);
1790  draw_info->affine.sx=image->resolution.x == 0.0 ? 1.0 : image->resolution.x/
1792  draw_info->affine.sy=image->resolution.y == 0.0 ? 1.0 : image->resolution.y/
1794  image->columns=(size_t) (draw_info->affine.sx*image->columns);
1795  image->rows=(size_t) (draw_info->affine.sy*image->rows);
1796  status=SetImageExtent(image,image->columns,image->rows,exception);
1797  if (status == MagickFalse)
1798  return(DestroyImageList(image));
1799  if (SetImageBackgroundColor(image,exception) == MagickFalse)
1800  {
1801  image=DestroyImageList(image);
1802  return((Image *) NULL);
1803  }
1804  /*
1805  Render drawing.
1806  */
1807  if (GetBlobStreamData(image) == (unsigned char *) NULL)
1808  draw_info->primitive=FileToString(image->filename,~0UL,exception);
1809  else
1810  {
1811  draw_info->primitive=(char *) AcquireMagickMemory((size_t)
1812  GetBlobSize(image)+1);
1813  if (draw_info->primitive != (char *) NULL)
1814  {
1815  (void) CopyMagickMemory(draw_info->primitive,GetBlobStreamData(image),
1816  (size_t) GetBlobSize(image));
1817  draw_info->primitive[GetBlobSize(image)]='\0';
1818  }
1819  }
1820  (void) DrawImage(image,draw_info,exception);
1821  draw_info=DestroyDrawInfo(draw_info);
1822  (void) CloseBlob(image);
1823  return(GetFirstImageInList(image));
1824 }
1825 
1826 MagickExport Image *HoughLineImage(const Image *image,const size_t width,
1827  const size_t height,const size_t threshold,ExceptionInfo *exception)
1828 {
1829 #define HoughLineImageTag "HoughLine/Image"
1830 
1831  CacheView
1832  *image_view;
1833 
1834  char
1835  message[MagickPathExtent],
1836  path[MagickPathExtent];
1837 
1838  const char
1839  *artifact;
1840 
1841  double
1842  hough_height;
1843 
1844  Image
1845  *lines_image = NULL;
1846 
1847  ImageInfo
1848  *image_info;
1849 
1850  int
1851  file;
1852 
1854  status;
1855 
1857  progress;
1858 
1859  MatrixInfo
1860  *accumulator;
1861 
1862  PointInfo
1863  center;
1864 
1865  register ssize_t
1866  y;
1867 
1868  size_t
1869  accumulator_height,
1870  accumulator_width,
1871  line_count;
1872 
1873  /*
1874  Create the accumulator.
1875  */
1876  assert(image != (const Image *) NULL);
1877  assert(image->signature == MagickCoreSignature);
1878  if (image->debug != MagickFalse)
1879  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1880  assert(exception != (ExceptionInfo *) NULL);
1881  assert(exception->signature == MagickCoreSignature);
1882  accumulator_width=180;
1883  hough_height=((sqrt(2.0)*(double) (image->rows > image->columns ?
1884  image->rows : image->columns))/2.0);
1885  accumulator_height=(size_t) (2.0*hough_height);
1886  accumulator=AcquireMatrixInfo(accumulator_width,accumulator_height,
1887  sizeof(double),exception);
1888  if (accumulator == (MatrixInfo *) NULL)
1889  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1890  if (NullMatrix(accumulator) == MagickFalse)
1891  {
1892  accumulator=DestroyMatrixInfo(accumulator);
1893  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1894  }
1895  /*
1896  Populate the accumulator.
1897  */
1898  status=MagickTrue;
1899  progress=0;
1900  center.x=(double) image->columns/2.0;
1901  center.y=(double) image->rows/2.0;
1902  image_view=AcquireVirtualCacheView(image,exception);
1903  for (y=0; y < (ssize_t) image->rows; y++)
1904  {
1905  register const Quantum
1906  *magick_restrict p;
1907 
1908  register ssize_t
1909  x;
1910 
1911  if (status == MagickFalse)
1912  continue;
1913  p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1914  if (p == (Quantum *) NULL)
1915  {
1916  status=MagickFalse;
1917  continue;
1918  }
1919  for (x=0; x < (ssize_t) image->columns; x++)
1920  {
1921  if (GetPixelIntensity(image,p) > (QuantumRange/2.0))
1922  {
1923  register ssize_t
1924  i;
1925 
1926  for (i=0; i < 180; i++)
1927  {
1928  double
1929  count,
1930  radius;
1931 
1932  radius=(((double) x-center.x)*cos(DegreesToRadians((double) i)))+
1933  (((double) y-center.y)*sin(DegreesToRadians((double) i)));
1934  (void) GetMatrixElement(accumulator,i,(ssize_t)
1935  MagickRound(radius+hough_height),&count);
1936  count++;
1937  (void) SetMatrixElement(accumulator,i,(ssize_t)
1938  MagickRound(radius+hough_height),&count);
1939  }
1940  }
1941  p+=GetPixelChannels(image);
1942  }
1943  if (image->progress_monitor != (MagickProgressMonitor) NULL)
1944  {
1946  proceed;
1947 
1948 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1949  #pragma omp critical (MagickCore_CannyEdgeImage)
1950 #endif
1951  proceed=SetImageProgress(image,CannyEdgeImageTag,progress++,
1952  image->rows);
1953  if (proceed == MagickFalse)
1954  status=MagickFalse;
1955  }
1956  }
1957  image_view=DestroyCacheView(image_view);
1958  if (status == MagickFalse)
1959  {
1960  accumulator=DestroyMatrixInfo(accumulator);
1961  return((Image *) NULL);
1962  }
1963  /*
1964  Generate line segments from accumulator.
1965  */
1966  file=AcquireUniqueFileResource(path);
1967  if (file == -1)
1968  {
1969  accumulator=DestroyMatrixInfo(accumulator);
1970  return((Image *) NULL);
1971  }
1972  (void) FormatLocaleString(message,MagickPathExtent,
1973  "# Hough line transform: %.20gx%.20g%+.20g\n",(double) width,
1974  (double) height,(double) threshold);
1975  if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
1976  status=MagickFalse;
1977  (void) FormatLocaleString(message,MagickPathExtent,
1978  "viewbox 0 0 %.20g %.20g\n",(double) image->columns,(double) image->rows);
1979  if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
1980  status=MagickFalse;
1981  line_count=image->columns > image->rows ? image->columns/4 : image->rows/4;
1982  if (threshold != 0)
1983  line_count=threshold;
1984  for (y=0; y < (ssize_t) accumulator_height; y++)
1985  {
1986  register ssize_t
1987  x;
1988 
1989  for (x=0; x < (ssize_t) accumulator_width; x++)
1990  {
1991  double
1992  count;
1993 
1994  (void) GetMatrixElement(accumulator,x,y,&count);
1995  if (count >= (double) line_count)
1996  {
1997  double
1998  maxima;
1999 
2000  SegmentInfo
2001  line;
2002 
2003  ssize_t
2004  v;
2005 
2006  /*
2007  Is point a local maxima?
2008  */
2009  maxima=count;
2010  for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
2011  {
2012  ssize_t
2013  u;
2014 
2015  for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
2016  {
2017  if ((u != 0) || (v !=0))
2018  {
2019  (void) GetMatrixElement(accumulator,x+u,y+v,&count);
2020  if (count > maxima)
2021  {
2022  maxima=count;
2023  break;
2024  }
2025  }
2026  }
2027  if (u < (ssize_t) (width/2))
2028  break;
2029  }
2030  (void) GetMatrixElement(accumulator,x,y,&count);
2031  if (maxima > count)
2032  continue;
2033  if ((x >= 45) && (x <= 135))
2034  {
2035  /*
2036  y = (r-x cos(t))/sin(t)
2037  */
2038  line.x1=0.0;
2039  line.y1=((double) (y-(accumulator_height/2.0))-((line.x1-
2040  (image->columns/2.0))*cos(DegreesToRadians((double) x))))/
2041  sin(DegreesToRadians((double) x))+(image->rows/2.0);
2042  line.x2=(double) image->columns;
2043  line.y2=((double) (y-(accumulator_height/2.0))-((line.x2-
2044  (image->columns/2.0))*cos(DegreesToRadians((double) x))))/
2045  sin(DegreesToRadians((double) x))+(image->rows/2.0);
2046  }
2047  else
2048  {
2049  /*
2050  x = (r-y cos(t))/sin(t)
2051  */
2052  line.y1=0.0;
2053  line.x1=((double) (y-(accumulator_height/2.0))-((line.y1-
2054  (image->rows/2.0))*sin(DegreesToRadians((double) x))))/
2055  cos(DegreesToRadians((double) x))+(image->columns/2.0);
2056  line.y2=(double) image->rows;
2057  line.x2=((double) (y-(accumulator_height/2.0))-((line.y2-
2058  (image->rows/2.0))*sin(DegreesToRadians((double) x))))/
2059  cos(DegreesToRadians((double) x))+(image->columns/2.0);
2060  }
2061  (void) FormatLocaleString(message,MagickPathExtent,
2062  "line %g,%g %g,%g # %g\n",line.x1,line.y1,line.x2,line.y2,maxima);
2063  if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
2064  status=MagickFalse;
2065  }
2066  }
2067  }
2068  (void) close(file);
2069  /*
2070  Render lines to image canvas.
2071  */
2072  image_info=AcquireImageInfo();
2073  image_info->background_color=image->background_color;
2074  (void) FormatLocaleString(image_info->filename,MagickPathExtent,"%s",path);
2075  artifact=GetImageArtifact(image,"background");
2076  if (artifact != (const char *) NULL)
2077  (void) SetImageOption(image_info,"background",artifact);
2078  artifact=GetImageArtifact(image,"fill");
2079  if (artifact != (const char *) NULL)
2080  (void) SetImageOption(image_info,"fill",artifact);
2081  artifact=GetImageArtifact(image,"stroke");
2082  if (artifact != (const char *) NULL)
2083  (void) SetImageOption(image_info,"stroke",artifact);
2084  artifact=GetImageArtifact(image,"strokewidth");
2085  if (artifact != (const char *) NULL)
2086  (void) SetImageOption(image_info,"strokewidth",artifact);
2087  lines_image=RenderHoughLines(image_info,image->columns,image->rows,exception);
2088  artifact=GetImageArtifact(image,"hough-lines:accumulator");
2089  if ((lines_image != (Image *) NULL) &&
2090  (IsStringTrue(artifact) != MagickFalse))
2091  {
2092  Image
2093  *accumulator_image;
2094 
2095  accumulator_image=MatrixToImage(accumulator,exception);
2096  if (accumulator_image != (Image *) NULL)
2097  AppendImageToList(&lines_image,accumulator_image);
2098  }
2099  /*
2100  Free resources.
2101  */
2102  accumulator=DestroyMatrixInfo(accumulator);
2103  image_info=DestroyImageInfo(image_info);
2104  (void) RelinquishUniqueFileResource(path);
2105  return(GetFirstImageInList(lines_image));
2106 }
2107 
2108 /*
2109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2110 % %
2111 % %
2112 % %
2113 % M e a n S h i f t I m a g e %
2114 % %
2115 % %
2116 % %
2117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2118 %
2119 % MeanShiftImage() delineate arbitrarily shaped clusters in the image. For
2120 % each pixel, it visits all the pixels in the neighborhood specified by
2121 % the window centered at the pixel and excludes those that are outside the
2122 % radius=(window-1)/2 surrounding the pixel. From those pixels, it finds those
2123 % that are within the specified color distance from the current mean, and
2124 % computes a new x,y centroid from those coordinates and a new mean. This new
2125 % x,y centroid is used as the center for a new window. This process iterates
2126 % until it converges and the final mean is replaces the (original window
2127 % center) pixel value. It repeats this process for the next pixel, etc.,
2128 % until it processes all pixels in the image. Results are typically better with
2129 % colorspaces other than sRGB. We recommend YIQ, YUV or YCbCr.
2130 %
2131 % The format of the MeanShiftImage method is:
2132 %
2133 % Image *MeanShiftImage(const Image *image,const size_t width,
2134 % const size_t height,const double color_distance,
2135 % ExceptionInfo *exception)
2136 %
2137 % A description of each parameter follows:
2138 %
2139 % o image: the image.
2140 %
2141 % o width, height: find pixels in this neighborhood.
2142 %
2143 % o color_distance: the color distance.
2144 %
2145 % o exception: return any errors or warnings in this structure.
2146 %
2147 */
2148 MagickExport Image *MeanShiftImage(const Image *image,const size_t width,
2149  const size_t height,const double color_distance,ExceptionInfo *exception)
2150 {
2151 #define MaxMeanShiftIterations 100
2152 #define MeanShiftImageTag "MeanShift/Image"
2153 
2154  CacheView
2155  *image_view,
2156  *mean_view,
2157  *pixel_view;
2158 
2159  Image
2160  *mean_image;
2161 
2163  status;
2164 
2166  progress;
2167 
2168  ssize_t
2169  y;
2170 
2171  assert(image != (const Image *) NULL);
2172  assert(image->signature == MagickCoreSignature);
2173  if (image->debug != MagickFalse)
2174  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2175  assert(exception != (ExceptionInfo *) NULL);
2176  assert(exception->signature == MagickCoreSignature);
2177  mean_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
2178  if (mean_image == (Image *) NULL)
2179  return((Image *) NULL);
2180  if (SetImageStorageClass(mean_image,DirectClass,exception) == MagickFalse)
2181  {
2182  mean_image=DestroyImage(mean_image);
2183  return((Image *) NULL);
2184  }
2185  status=MagickTrue;
2186  progress=0;
2187  image_view=AcquireVirtualCacheView(image,exception);
2188  pixel_view=AcquireVirtualCacheView(image,exception);
2189  mean_view=AcquireAuthenticCacheView(mean_image,exception);
2190 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2191  #pragma omp parallel for schedule(static,4) shared(status,progress) \
2192  magick_number_threads(mean_image,mean_image,mean_image->rows,1)
2193 #endif
2194  for (y=0; y < (ssize_t) mean_image->rows; y++)
2195  {
2196  register const Quantum
2197  *magick_restrict p;
2198 
2199  register Quantum
2200  *magick_restrict q;
2201 
2202  register ssize_t
2203  x;
2204 
2205  if (status == MagickFalse)
2206  continue;
2207  p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
2208  q=GetCacheViewAuthenticPixels(mean_view,0,y,mean_image->columns,1,
2209  exception);
2210  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
2211  {
2212  status=MagickFalse;
2213  continue;
2214  }
2215  for (x=0; x < (ssize_t) mean_image->columns; x++)
2216  {
2217  PixelInfo
2218  mean_pixel,
2219  previous_pixel;
2220 
2221  PointInfo
2222  mean_location,
2223  previous_location;
2224 
2225  register ssize_t
2226  i;
2227 
2228  GetPixelInfo(image,&mean_pixel);
2229  GetPixelInfoPixel(image,p,&mean_pixel);
2230  mean_location.x=(double) x;
2231  mean_location.y=(double) y;
2232  for (i=0; i < MaxMeanShiftIterations; i++)
2233  {
2234  double
2235  distance,
2236  gamma;
2237 
2238  PixelInfo
2239  sum_pixel;
2240 
2241  PointInfo
2242  sum_location;
2243 
2244  ssize_t
2245  count,
2246  v;
2247 
2248  sum_location.x=0.0;
2249  sum_location.y=0.0;
2250  GetPixelInfo(image,&sum_pixel);
2251  previous_location=mean_location;
2252  previous_pixel=mean_pixel;
2253  count=0;
2254  for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
2255  {
2256  ssize_t
2257  u;
2258 
2259  for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
2260  {
2261  if ((v*v+u*u) <= (ssize_t) ((width/2)*(height/2)))
2262  {
2263  PixelInfo
2264  pixel;
2265 
2266  status=GetOneCacheViewVirtualPixelInfo(pixel_view,(ssize_t)
2267  MagickRound(mean_location.x+u),(ssize_t) MagickRound(
2268  mean_location.y+v),&pixel,exception);
2269  distance=(mean_pixel.red-pixel.red)*(mean_pixel.red-pixel.red)+
2270  (mean_pixel.green-pixel.green)*(mean_pixel.green-pixel.green)+
2271  (mean_pixel.blue-pixel.blue)*(mean_pixel.blue-pixel.blue);
2272  if (distance <= (color_distance*color_distance))
2273  {
2274  sum_location.x+=mean_location.x+u;
2275  sum_location.y+=mean_location.y+v;
2276  sum_pixel.red+=pixel.red;
2277  sum_pixel.green+=pixel.green;
2278  sum_pixel.blue+=pixel.blue;
2279  sum_pixel.alpha+=pixel.alpha;
2280  count++;
2281  }
2282  }
2283  }
2284  }
2285  gamma=1.0/count;
2286  mean_location.x=gamma*sum_location.x;
2287  mean_location.y=gamma*sum_location.y;
2288  mean_pixel.red=gamma*sum_pixel.red;
2289  mean_pixel.green=gamma*sum_pixel.green;
2290  mean_pixel.blue=gamma*sum_pixel.blue;
2291  mean_pixel.alpha=gamma*sum_pixel.alpha;
2292  distance=(mean_location.x-previous_location.x)*
2293  (mean_location.x-previous_location.x)+
2294  (mean_location.y-previous_location.y)*
2295  (mean_location.y-previous_location.y)+
2296  255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)*
2297  255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)+
2298  255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)*
2299  255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)+
2300  255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue)*
2301  255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue);
2302  if (distance <= 3.0)
2303  break;
2304  }
2305  SetPixelRed(mean_image,ClampToQuantum(mean_pixel.red),q);
2306  SetPixelGreen(mean_image,ClampToQuantum(mean_pixel.green),q);
2307  SetPixelBlue(mean_image,ClampToQuantum(mean_pixel.blue),q);
2308  SetPixelAlpha(mean_image,ClampToQuantum(mean_pixel.alpha),q);
2309  p+=GetPixelChannels(image);
2310  q+=GetPixelChannels(mean_image);
2311  }
2312  if (SyncCacheViewAuthenticPixels(mean_view,exception) == MagickFalse)
2313  status=MagickFalse;
2314  if (image->progress_monitor != (MagickProgressMonitor) NULL)
2315  {
2317  proceed;
2318 
2319 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2320  #pragma omp critical (MagickCore_MeanShiftImage)
2321 #endif
2322  proceed=SetImageProgress(image,MeanShiftImageTag,progress++,
2323  image->rows);
2324  if (proceed == MagickFalse)
2325  status=MagickFalse;
2326  }
2327  }
2328  mean_view=DestroyCacheView(mean_view);
2329  pixel_view=DestroyCacheView(pixel_view);
2330  image_view=DestroyCacheView(image_view);
2331  return(mean_image);
2332 }
size_t rows
Definition: image.h:172
#define magick_restrict
Definition: MagickCore.h:41
static Image * RenderHoughLines(const ImageInfo *image_info, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: feature.c:1763
double difference_entropy[4]
Definition: feature.h:31
MagickExport CacheView * DestroyCacheView(CacheView *cache_view)
Definition: cache-view.c:252
#define Log10Epsilon
char * primitive
Definition: draw.h:203
double x2
Definition: image.h:107
static MagickBooleanType SetImageProgress(const Image *image, const char *tag, const MagickOffsetType offset, const MagickSizeType extent)
static double MagickRound(double x)
Definition: feature.c:1753
MagickExport ImageInfo * AcquireImageInfo(void)
Definition: image.c:341
double sum_entropy[4]
Definition: feature.h:31
MagickProgressMonitor progress_monitor
Definition: image.h:303
static Quantum GetPixelAlpha(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
MagickExport MagickBooleanType TransformImageColorspace(Image *image, const ColorspaceType colorspace, ExceptionInfo *exception)
Definition: colorspace.c:1273
unsigned int green
Definition: pixel.h:199
static Quantum GetPixelRed(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
double intensity
Definition: feature.c:136
int orientation
Definition: feature.c:140
MagickExport KernelInfo * DestroyKernelInfo(KernelInfo *kernel)
Definition: morphology.c:2268
#define ThrowFatalException(severity, tag)
MagickExport MagickBooleanType NullMatrix(MatrixInfo *matrix_info)
Definition: matrix.c:1002
size_t signature
Definition: exception.h:123
MagickExport Image * MorphologyImage(const Image *image, const MorphologyMethod method, const ssize_t iterations, const KernelInfo *kernel, ExceptionInfo *exception)
Definition: morphology.c:4108
MagickExport MagickBooleanType GetOneCacheViewVirtualPixelInfo(const CacheView *cache_view, const ssize_t x, const ssize_t y, PixelInfo *pixel, ExceptionInfo *exception)
Definition: cache-view.c:846
MagickExport const char * GetImageArtifact(const Image *image, const char *artifact)
Definition: artifact.c:273
MagickRealType red
Definition: pixel.h:188
static MagickBooleanType TraceEdges(Image *edge_image, CacheView *edge_view, MatrixInfo *canny_cache, const ssize_t x, const ssize_t y, const double lower_threshold, ExceptionInfo *exception)
Definition: feature.c:157
#define CannyEdgeImageTag
#define MagickAbsoluteValue(x)
Definition: image-private.h:25
MagickExport ssize_t FormatLocaleString(char *magick_restrict string, const size_t length, const char *magick_restrict format,...)
Definition: locale.c:473
ssize_t x
Definition: feature.c:143
unsigned int blue
Definition: pixel.h:199
MagickExport const Quantum * GetCacheViewVirtualPixels(const CacheView *cache_view, const ssize_t x, const ssize_t y, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: cache-view.c:651
static double MagickLog10(const double x)
Definition: feature.c:613
MagickRealType alpha
Definition: pixel.h:188
struct _ChannelStatistics ChannelStatistics
#define MagickEpsilon
Definition: magick-type.h:110
MagickExport MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info, const ssize_t x, const ssize_t y, void *value)
Definition: matrix.c:705
AffineMatrix affine
Definition: draw.h:210
double contrast[4]
Definition: feature.h:31
Definition: log.h:52
MagickExport char * FileToString(const char *filename, const size_t extent, ExceptionInfo *exception)
Definition: string.c:985
ssize_t MagickOffsetType
Definition: magick-type.h:127
MagickExport void GetPixelInfo(const Image *image, PixelInfo *pixel)
Definition: pixel.c:2161
MagickExport MagickBooleanType SetImageOption(ImageInfo *image_info, const char *option, const char *value)
Definition: option.c:3223
double correlation[4]
Definition: feature.h:31
Definition: image.h:151
double sum_variance[4]
Definition: feature.h:31
MagickExport MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info, const ssize_t x, const ssize_t y, const void *value)
Definition: matrix.c:1109
double x
Definition: geometry.h:122
MagickExport KernelInfo * AcquireKernelInfo(const char *kernel_string, ExceptionInfo *exception)
Definition: morphology.c:486
#define MagickCoreSignature
MagickExport Quantum * GetCacheViewAuthenticPixels(CacheView *cache_view, const ssize_t x, const ssize_t y, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: cache-view.c:299
MagickExport Image * GetFirstImageInList(const Image *images)
Definition: list.c:541
MagickExport MagickBooleanType SetImageAlphaChannel(Image *image, const AlphaChannelOption alpha_type, ExceptionInfo *exception)
Definition: channel.c:966
MagickBooleanType
Definition: magick-type.h:156
static double PerceptibleReciprocal(const double x)
MagickExport int AcquireUniqueFileResource(char *path)
Definition: resource.c:549
unsigned int black
Definition: pixel.h:199
double measure_of_correlation_1[4]
Definition: feature.h:31
MagickExport void * ResetMagickMemory(void *memory, int byte, const size_t size)
Definition: memory.c:1164
double x1
Definition: image.h:107
MagickExport Image * MeanShiftImage(const Image *image, const size_t width, const size_t height, const double color_distance, ExceptionInfo *exception)
Definition: feature.c:2148
MagickExport void * AcquireQuantumMemory(const size_t count, const size_t quantum)
Definition: memory.c:529
char filename[MagickPathExtent]
Definition: image.h:471
static double DegreesToRadians(const double degrees)
Definition: image-private.h:56
double y
Definition: geometry.h:122
MagickExport MagickBooleanType RelinquishUniqueFileResource(const char *path)
Definition: resource.c:1131
MagickExport MagickBooleanType CloseBlob(Image *)
#define MagickPathExtent
MagickExport Image * MatrixToImage(const MatrixInfo *matrix_info, ExceptionInfo *exception)
Definition: matrix.c:872
static Quantum GetPixelGreen(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
MagickExport MagickBooleanType IsStringTrue(const char *value)
Definition: string.c:1464
static void GetPixelInfoPixel(const Image *magick_restrict image, const Quantum *magick_restrict pixel, PixelInfo *magick_restrict pixel_info)
MagickExport MagickBooleanType DrawImage(Image *image, const DrawInfo *draw_info, ExceptionInfo *exception)
Definition: draw.c:1668
PixelTrait alpha_trait
Definition: image.h:280
MagickRealType blue
Definition: pixel.h:188
MagickExport Image * HoughLineImage(const Image *image, const size_t width, const size_t height, const size_t threshold, ExceptionInfo *exception)
Definition: feature.c:1826
static Quantum GetPixelBlack(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
#define MaxMeanShiftIterations
double entropy[4]
Definition: feature.h:31
double sx
Definition: geometry.h:94
MagickExport MatrixInfo * AcquireMatrixInfo(const size_t columns, const size_t rows, const size_t stride, ExceptionInfo *exception)
Definition: matrix.c:200
double y2
Definition: image.h:107
MagickExport MagickBooleanType ThrowMagickException(ExceptionInfo *exception, const char *module, const char *function, const size_t line, const ExceptionType severity, const char *tag, const char *format,...)
Definition: exception.c:1058
MagickExport MagickBooleanType LogMagickEvent(const LogEventType type, const char *module, const char *function, const size_t line, const char *format,...)
Definition: log.c:1397
MagickExport MagickBooleanType SetImageBackgroundColor(Image *image, ExceptionInfo *exception)
Definition: image.c:2308
size_t signature
Definition: image.h:354
#define QuantumScale
Definition: magick-type.h:113
size_t columns
Definition: image.h:172
MagickExport Image * AcquireImage(const ImageInfo *image_info, ExceptionInfo *exception)
Definition: image.c:154
double sum_average[4]
Definition: feature.h:31
MagickExport MagickBooleanType OpenBlob(const ImageInfo *, Image *, const BlobMode, ExceptionInfo *)
MagickBooleanType(* MagickProgressMonitor)(const char *, const MagickOffsetType, const MagickSizeType, void *)
Definition: monitor.h:26
unsigned int alpha
Definition: pixel.h:199
MagickExport DrawInfo * CloneDrawInfo(const ImageInfo *image_info, const DrawInfo *draw_info)
Definition: draw.c:242
#define MeanShiftImageTag
static void SetPixelBlue(const Image *magick_restrict image, const Quantum blue, Quantum *magick_restrict pixel)
MagickExport MagickBooleanType SetImageStorageClass(Image *image, const ClassType storage_class, ExceptionInfo *exception)
Definition: image.c:2508
MagickExport Image * DestroyImageList(Image *images)
Definition: list.c:442
#define MaxMap
Definition: magick-type.h:75
MagickExport MagickBooleanType SetImageExtent(Image *image, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: image.c:2550
double variance_sum_of_squares[4]
Definition: feature.h:31
static size_t GetPixelChannels(const Image *magick_restrict image)
char filename[MagickPathExtent]
Definition: image.h:319
static MagickBooleanType IsAuthenticPixel(const Image *image, const ssize_t x, const ssize_t y)
Definition: feature.c:147
#define GetMagickModule()
Definition: log.h:28
ssize_t y
Definition: feature.c:143
double sy
Definition: geometry.h:94
MagickExport ChannelFeatures * GetImageFeatures(const Image *image, const size_t distance, ExceptionInfo *exception)
Definition: feature.c:622
#define ThrowImageException(severity, tag)
static Quantum ClampToQuantum(const MagickRealType value)
Definition: quantum.h:84
MagickExport CacheView * AcquireVirtualCacheView(const Image *image, ExceptionInfo *exception)
Definition: cache-view.c:149
MagickExport MagickSizeType GetBlobSize(const Image *image)
Definition: blob.c:1686
MagickExport ImageInfo * DestroyImageInfo(ImageInfo *image_info)
Definition: image.c:1253
double inverse_difference_moment[4]
Definition: feature.h:31
struct _CannyInfo CannyInfo
unsigned short Quantum
Definition: magick-type.h:82
unsigned int red
Definition: pixel.h:199
double maximum_correlation_coefficient[4]
Definition: feature.h:31
double difference_variance[4]
Definition: feature.h:31
MagickExport DrawInfo * DestroyDrawInfo(DrawInfo *draw_info)
Definition: draw.c:822
MagickExport void * AcquireMagickMemory(const size_t size)
Definition: memory.c:458
double magnitude
Definition: feature.c:136
MagickExport void AppendImageToList(Image **images, const Image *append)
Definition: list.c:77
static void SetPixelAlpha(const Image *magick_restrict image, const Quantum alpha, Quantum *magick_restrict pixel)
double measure_of_correlation_2[4]
Definition: feature.h:31
MagickExport void * RelinquishMagickMemory(void *memory)
Definition: memory.c:1038
#define MaxPixelChannels
Definition: pixel.h:27
PointInfo resolution
Definition: image.h:209
MagickExport Image * CannyEdgeImage(const Image *image, const double radius, const double sigma, const double lower_percent, const double upper_percent, ExceptionInfo *exception)
Definition: feature.c:237
MagickRealType green
Definition: pixel.h:188
static void SetPixelRed(const Image *magick_restrict image, const Quantum red, Quantum *magick_restrict pixel)
#define MagickExport
MagickExport MagickBooleanType SyncCacheViewAuthenticPixels(CacheView *magick_restrict cache_view, ExceptionInfo *exception)
Definition: cache-view.c:1100
MagickExport CacheView * AcquireAuthenticCacheView(const Image *image, ExceptionInfo *exception)
Definition: cache-view.c:112
MagickExport const double DefaultResolution
Definition: image.c:125
double y1
Definition: image.h:107
static Quantum GetPixelBlue(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
MagickExport MagickRealType GetPixelIntensity(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
Definition: pixel.c:2355
PixelInfo background_color
Definition: image.h:179
MagickExport Image * DestroyImage(Image *image)
Definition: image.c:1182
MagickExport Image * CloneImage(const Image *image, const size_t columns, const size_t rows, const MagickBooleanType detach, ExceptionInfo *exception)
Definition: image.c:799
double angular_second_moment[4]
Definition: feature.h:31
MagickExport void * CopyMagickMemory(void *destination, const void *source, const size_t size)
Definition: memory.c:721
MagickExport void * GetBlobStreamData(const Image *image)
Definition: blob.c:1781
PixelInfo background_color
Definition: image.h:415
ColorspaceType colorspace
Definition: image.h:157
#define QuantumRange
Definition: magick-type.h:83
MagickBooleanType debug
Definition: image.h:334
static void SetPixelGreen(const Image *magick_restrict image, const Quantum green, Quantum *magick_restrict pixel)
MagickExport MatrixInfo * DestroyMatrixInfo(MatrixInfo *matrix_info)
Definition: matrix.c:369